Томограф что такое – что это за исследования и в чем польза и вред

Содержание

что это за исследования и в чем польза и вред

Со времен становления медицины как самостоятельной отрасли, создавались различные инструменты для исследования органов человека. С развитием науки в XX веке были созданы совершенно новые устройства для неинвазивной диагностики – аппараты рентгеновской и магнитно-резонансной томографии. О том, как проводится обследование данными методами и в чем разница между ними, вы узнаете в этой статье.

...

Вконтакте

Facebook

Twitter

Мой мир

Компьютерная томография

Что такое томография? Данное слово с греческого языка переводится как «Сечение» и «Изображать».

То есть, это процесс получения изображения исследуемого тела слой за слоем, корни которого уходят глубоко в историю.

Становление томографии, как метода, начинается еще XIX веке, когда математиками бы проведен анализ интегральных уравнений, которые спустя сотню лет станут основой основ.

Позднее, в 1895-м году известным ученым Рентгеном был открыт ранее неизвестный тип излучения, позднее названный его именем. Рентгеновские лучи позволили совершить рывок, как в диагностировании заболеваний, так и их лечении.

Важно! Рентгеновские лучи представляют собой электромагнитные волны, лежащие за областью видимого спектра и ультрафиолетового излучения. Нашли свое применение в медицине благодаря своей способности беспрепятственно проходить сквозь исследуемый объект и засвечивать фотопластину. Так, кости поглощают данное излучение сильнее по сравнению с мягкими тканями, и в результате неравномерного засвета пластины становятся видимы их очертания

Несмотря на то, что рентгенограмма стала прорывом на то время, у нее имелся существенный недостаток. Снимки фиксировались либо на специальной пластине, либо на фотопленке, и представляли собой двухмерное изображение. Недостаток заключался в том, что тело пациента просвечивалось насквозь, вследствие чего изображения соседних органов накладывались друг на друга.

В 50-х годах XX века произошел резкий скачок в развитии электронно-лучевых трубок — источниках рентгеновского излучения, а также в развитии вычислительной техники. Это открыло путь к дальнейшему улучшению технологии рентгеноскопии, в результате чего был изобретен аппарат компьютерной томографии.

Что это такое? Как и в обычном рентгеновском аппарате, наиболее важной частью является источник излучения, которое просвечивает исследуемый объект.

Другим, не менее важным элементом, является детектор рентгеновского излучения.

По своему устройству он очень схож с современным цифровым фотоаппаратом, за исключением того, что чувствителен не к видимому свету, а к волнам рентгеновского диапазона.

Между двумя этими устройствами располагается исследуемый объект – пациент. Лучи, пройдя сквозь него, поглощаются с разной силой и принимаются детектором. Для того чтобы получить снимки с разных ракурсов, данная пара выполняется в виде своеобразной «карусели», которая вращается вокруг пациента и просвечивает его со всевозможных углов.

Наконец, последним звеном является компьютер. В его задачи входить собрать полученные снимки воедино, а затем обработать, в итоге получить 3D модель исследуемого объекта.

Магнитно-резонансная томография

В чем разница между КТ и МРТ? Магнитно-резонансный томограф – дальнейшее развитие неинвазивной диагностической техники. Первые упоминания о работе в данной области относятся к 70-м годам прошлого века, когда было высказано предположение о возможности исследования объектов с помощью явления магнитного резонанса. Позднее, в 2003 году, первопроходцы в данной области были удостоены Нобелевской премии за вклад в развитие медицины.

По какому принципу работает магнитно-резонансный томограф?

Краеугольный камень данного аппарата – явление ядерного магнитного резонанса, которое дает возможность получить информацию о насыщенности исследуемого объекта определенным химическим элементом.

В данном случае хорошо зарекомендовал себя водород, являющийся составной частью воды, столько широко распространенной в живых тканях.

Как гласит школьный курс химии – ядро атома водорода состоит из одного протона. Данная частица имеет собственный магнитный момент, или, как говорят физики – спин.

Для того чтобы читателю было легче это понять, будем упрощенно считать, что ядро водорода — миниатюрный магнит, с которыми мы имели дело в повседневной жизни. Как известно из опыта – два магнита стремятся притянуться друг к другу, либо же оттолкнуться, в зависимости от своего положения. Именно это свойство – способность протона менять ориентацию во внешнем магнитном поле является наиболее важной и позволяет ответить на вопрос: «Что такое МРТ?»

Внимание! Главным элементом конструкции томографа такого типа является источник магнитного поля. В качестве него наиболее часто используются электромагниты, хотя применяются и постоянные магниты.

Попеременно меняя направление магнитного поля, можно заставить ядро водорода также менять свою ориентацию, при этом затрачивая энергию.

В результате этого ядро атома приходит в так называемое возбужденное состояние, а после чего отдает накопленную энергию обратно в виде электромагнитной волны.

Затем в дело вступает компьютер. Зная параметры магнитного поля на текущий момент, а также проанализировав вернувшуюся энергию, вычисляется местонахождение частицы.

Выполняя такие вычисления непрерывно, появляется возможность построить трехмерную модель исследуемого органа. Но, все же, какой томограф лучше?

Важно! Первоначально данный метод имел название ядерно-резонансной магнитной томографии – ЯМР. Однако название было изменено на МРТ в 1986 году. Связано это с Чернобыльской катастрофой, в результате которой у некоторых слоев населения развилась радиофобия – боязнь радиации и всего «ядерного», в том числе – отсутствие желание разобраться – «Что такое МРТ?»

Безопасность томографии для здоровья

Тема безопасности процедуры томографирования весьма часто поднимается пациентами, еще не раз не проходившими такой тип диагностирования. Давайте попробуем поставить разобраться в этом вопросе и окончательно поставить точку в теме: «Какой томограф лучше?».

Безопасность рентгеновской томографии

Рентгеновское лучи представляют собой ионизирующее электромагнитное излучение. В больших дозах способно вызвать лучевую болезнь наподобие действию гамма-радиации. Однако повода для беспокойства абсолютно нет.

К современным томографам применяются высочайшие требования в вопросе радиобезопасности, так что лучевая нагрузка довольно мала.

Так, для примера, годовая доза излучения, полученная от естественного фона, равняется примерно 150 мЗв. В то время как за один сеанс РКТ диагностирования поглощенная доза составляет порядка 10 мЗВ. Но, следует запомнить, что проводить повторную процедуру следует не ранее полугодового перерыва.

Важно! Полным противопоказанием к проведению диагностирования является беременность. Вызвано это высокой тератогенностью рентгеновского излучения – способностью вызывать аномалии развития плода.

Отдельное внимание стоит уделить внимание контрастному препарату. При определенных типах исследования требуется его внутривенный ввод, чтобы сделать нужные органы более четкими. В некоторых случаях возможна аллергия на данный препарат, что также является противопоказанием.

Безопасность МРТ

Проведение данного топографического исследования абсолютно безопасно для организма по причине отсутствия рентгеновского излучения, что позволяет выполнять различные виды МРТ исследований, и не задаваться вопросом «Что безопаснее».

Магнитные поля не оказывают влияния на организм человека, но на данный момент не нет исследований касательно вреда и безопасности для плода. Вследствие этого рекомендуется отказаться от процедуры на ранних сроках беременности.

Помимо того, по причине наличия сильного магнитного поля имеется

ряд ограничений на проведение диагностики:

  • установленные кардиостимуляторы;
  • металлические зубные протезы;
  • различные металлосодержащие импланты, в том числе и слуховые;
  • аппарат Илизарова, устанавливаемый при сложных переломах.

Также стоит рассказать про признаки клаустрофобии. Данный термин означает паническую боязнь закрытых пространств, которая в некоторых случаях проявляется даже у тех, кто ранее ею не страдал. В подобных случаях рекомендуется использование томографов открытого типа. Отвечая на вопрос: что вреднее МРТ или рентгеновское исследование, следует отметить, что МРТ — абсолютно безопасная процедура.

Типы томографических исследований

Какие виды диагностирования проводятся при томографировании, какой тип томографа подходит лучше и что безопаснее? Давайте ответим на этот вопрос.

Томографирование позволяет провести исследование абсолютно любого органа — каких-либо ограничений не имеется. Так, наиболее часто обследуются следующие отделы:

  • головной и шейный отделы;
  • грудная клетка;
  • органы брюшной полости и таза;
  • позвоночник, кости и суставы.

Нередко на приеме у врача пациентами поднимается вопрос – какой тип томографа лучше при обследовании того или иного органа. Тут тоже есть ряд нюансов.

Чем отличается КТ от МРТ головного мозга? Компьютерное томографирование применяется для обследований травм черепа и головного мозга.

Также с его помощью хорошо визуализируются сосуды, что требуется при постановке диагноза «инсульт». МРТ же отличное зарекомендовала себя при выявлении опухолей, кист, а также синдрома Альцгеймера.

Что выбрать — МРТ или КТ позвоночника? МРТ поможет диагностировать заболевания водосодержащих тканей, таких как: стеноз, межпозвонковая грыжа или же метастазы раковых заболеваний.

КТ же подойдет для выявления аномалий костной ткани, ее повреждений, а также остеопороза и других «чисто костных» заболеваний.

Что лучше МРТ или компьютерная томография брюшной полости? Тут, по большей части, стоит отдавать предпочтение МРТ, ввиду отсутствия костной ткани. Кроме того, современные аппараты МРТ могут в реальном времени отследить ток различных жидкостей. Но все же, окончательно решение должен принимать врач.

Видео: в чем разница между КТ и МРТ

Вывод

Итак, после всего сказанного, мы выяснили, в чем заключается разница между компьютерной томографией и МРТ, какие имеются ограничение на проведение процедур, а также какие заболевания можно выявить при помощи того или иного метода. Надеемся, эти знания будут полезны, спасибо за внимание!

Вконтакте

Одноклассники

Facebook

Twitter

Мой мир

doktora.guru

Томограф - это... Что такое Томограф?

Пример современного томографа Открытый МР-томограф

Магни́тно-резона́нсный томо́граф (МРТ), ядерно магнитно-резонансный томограф (ЯМРТ) или магнитно-резонансная томография (МРТ), является основным инструментом медицинской техники для создания изображений, используемых в радиологии для подробной визуализации внутренних структур и органов человека. Томограф обеспечивает хороший контраст между различными мягкими тканями тела, что делает его особенно полезным при исследованиях мозга, мышц, сердца и диагностики рака по сравнению с другими медицинскими методами визуализации, такими, как рентгеновская компьютерная томография (КТ) или рентгенография. В отличие от компьютерного томографа или традиционного рентгеновского аппарата в магнитно-резонансном томографе не используются ионизирующие излучения. Вместо этого он использует мощные магнитные поля, чтобы выровнять намагниченность некоторых атомов в теле, а затем использует радиочастотные поля чтобы систематически изменять направление этой намагниченности. Это приводит к появлению вращающегося магнитного поля, регистрируемого сканером и позволяет построить образ сканируемой области тела. Магнитно-резонансный томограф использует относительно новую технологию. Первые изображения томографов были опубликованы в 1973 году, а первый снимок поперечного сечения живой мыши — в январе 1974 года. Первые исследования, проведенные на людях, были опубликованы в 1977 году. Для сравнения, первый рентгеновский снимок человека был сделан в 1895 году.

Принцип действия

Тело состоит в основном из молекул воды. Каждая молекула воды состоит из двух ядер водорода или протонов. Когда человек находится внутри мощного магнитного поля сканера, магнитные моменты некоторых из этих протонов изменяются и выравниваются по направлению прилагаемого поля. В томографе включается на небольшой промежуток времени радиочастотный генератор, создавая электромагнитное поле. Энергия фотонов этого поля, известная как резонансная частота, достаточная чтобы повернуть спины протонов в теле. По мере нарастания интенсивности и длительности поля увеличивается количество повернувшихся спинов. После выключения поля, спины протонов возвращаются в первоначальное состояние, а разница в энергии между двумя состояниями высвобождается в виде фотона. Именно эти производящие электромагнитные сигналы фотоны обнаруживает сканер в томографе. Количество резонировавших протонов зависит от силы магнитного поля.

Связь между напряженностью приложенного поля и частотой позволяет использовать томограф ядерно-магнитного резонанса для работы с изображениями внутренних тканей человека. Для изменения позиции томографического среза внутри пациента применяются дополнительные магнитные поля, применяемые в ходе работы томографа. Информация о позиции может быть получена из результирующего сигнала с помощью преобразования Фурье. Эти поля создаются путем пропускания электрического тока через специальные соленоиды, известные как градиентные катушки. Поскольку эти катушки находятся внутри туннеля сканера, существуют большие силы взаимодействия между ними и основным полем, создавая большую часть шума во время работы. Если не ослаблять этот шум, он может доходить до 130 децибел (дБ) при сильных полях.

Изображение может быть построено, поскольку протоны в различных тканях возвращаются в свои равновесные состояния с различной скоростью, которая и является той разницей, которая может быть обнаружена и использована для построения изображения. Пять различных параметров – плотность спина, времена T1 и T2 релаксации, поток и спектральные сдвиги также используются для построения изображения. При изменении параметров сканера, этот эффект используется для создания контраста между различными типами тканей тела или между другими свойствами, как и в обычных, так и диффузионных магнитно-резонансных томографах.

Контрастные вещества могут быть введены внутривенно, чтобы улучшить визуализацию кровеносных сосудов, опухоли или воспаления. Контрастные агенты также могут быть непосредственно введены в сустав в случае артрограмм, при томографии суставов. В отличие от КТ, МРТ не использует ионизирующего излучения и, как правило, очень безопасная процедура. Тем не менее сильные магнитные поля и радиоимпульсы могут повлиять на металлические имплантаты, в том числе кохлеарные имплантаты и кардиостимуляторы. В случае кохлеарных имплантатов, США FDA одобрило некоторые имплантаты для совместимости с аппаратами МРТ. В случае кардиостимуляторов результаты могут иногда привести к летальному исходу; так пациентам с такими имплантатами, как правило, МРТ противопоказана.

МРТ используется для исследования любых частей тела и особенно эффективна для тканей с высоким содержанием ядер водорода и малым контрастом плотности, таких как мозг, мышцы, соединительная ткань и большинство опухолей.

Применение

В клинической практике, томограф используется, чтобы отличать патологические ткани (например, опухоль головного мозга) от нормальных тканей. Одно из преимуществ магнитно-резонансной томографии в том, что процедура сканирования является практически безвредной для пациента. МР-томограф использует сильные магнитные поля и не ионизирующие излучения в РЧ диапазоне, что выгодно отличает его от компьютерной томографии и традиционной рентгенографии.

Хотя КТ обеспечивает хорошее пространственное разрешение (способность различать две области отдельных структур на достаточно малом расстоянии друг от друга), МРТ обеспечивает хорошее контрастное разрешение (способность выделять различия между двумя похожими, но не идентичными тканями). В основе этой возможности лежит комплекс импульсных последовательностей, которые включают в себя современные медицинские МРТ сканеры, каждый из которых оптимизирован для конкретного контраста и изображения, основанный на химической чувствительности МРТ.

В обычном томографе используется до 20 различных последовательностей, каждая из которых выбирается для получения определенного типа информации.

Типы томографических исследований

  • Т1-взвешенная МРТ
  • Т2-взвешенная МРТ
  • T* 2-взвешенная МРТ
  • МРТ спиновой плотности
  • Диффузионная МРТ
  • МРТ передачи намагниченности
  • FLAIR (Инверсия-восстановление с подавлением сигнала от воды)
  • Магнитно-резонансная ангиография
  • Магнитный резонанс закрытой внутричерепного динамики CSF (MR-GILD)
  • Магнитно-резонансная спектроскопия
  • Функциональная МРТ
  • МРТ в режиме реального времени
  • Интервенционная МРТ
  • Лучевая терапия моделирования
  • Изображения текущей плотности

Производители томографов

  • Siemens (Германия - Китай 48% выпускаемого оборудования)
  • Basda (Китай)
  • GE Healthcare (США - Китай 84% выпускаемого оборудования)
  • Toshiba( Япония 100%)
  • Phillips ( Евросоюз )
  • AILab Inc., (Южная Корея)(с 2011 года SciMedix Co.Ltd)
  • НПФ Аз, (Российская Федерация)

См также

  • A. C. Kak, M. Slaney Principles of Computerized Tomographic imaging. (IEEE Press, NY 1988)
  • Хорнак Дж. П. Основы МРТ (1996—1999)
  • Cormack A.M. Early two-dimensional reconstruction and recent topics stemming from it // Nobel Lectures in Physiology or Medicine 1971—1980. — World Scientific Publishing Co., 1992. — p. 551—563
  • Hounsfield G.N. Computed Medical Imaging // Nobel Lectures in Physiology or Medicine 1971—1980. — World Scientific Publishing Co., 1992. — p. 568—586
  • Lauterbur P.C. All science is interdisciplinary — from magnetic moments to molecules to men // Les Prix Nobel. The Nobel Prizes 2003. — Nobel Foundation, 2004. — p. 245—251
  • Mansfield P. Snap-shot MRI // Les Prix Nobel. The Nobel Prizes 2003. — Nobel Foundation, 2004. — p. 266—283
  • [1] Магнитно-резонансные томографы Basda
  • [2] Магнитно-резонансные томографы Toshiba
  • [3] Магнитно-резонансные томографы GE Healthcare
  • [4] Магнитно-резонансные томографы Аз
  • Мэнсфилд П. Быстрая магнитно-резонансная томография // Успехи физических наук, 2005, т. 175, № 10, с. 1044—1052 (перевод на русский)
  • Дьячкова С. Я., Николаевский В. А. Рентгеноконтрастные средства. — Воронеж, 2006.
  • Важенин А. В., Ваганов Н. В. Медицинско-физическое обеспечение лучевой терапии. — Челябинск, 2007.
  • Левин Г. Г., Вишняков Г. Н. Оптическая томография. — М.: Радио и связь, 1989. — 224 с.
  • Тихонов А. Н., Арсенин В. Я., Тимонов А. А. Математические задачи компьютерной томографии. — М.: Наука, Гл. ред. физ.-мат. лит., 1987. — 160 с.
  • Тихонов А. Н., Гончарский А. В., Степанов В. В., Ягола А. Г. Численные методы решения некорректных задач. — М.: Наука, Гл. ред. физ.-мат. лит., 1990. — 232 с.
  • Наттерер Ф. Математические аспекты компьютерной томографии. — М.: Мир, 1990. — 288 с.
  • Васильев М. Н., Горшков А. В. Аппаратно-программный комплекс GEMMA и томографический метод измерения многомерных функций распределения в траекторном и фазовом пространствах при диагностике пучков заряженных частиц. // Приборы и техника эксперимента. — 1994. № 5. — С.79-94. // Перевод на англ.: Instruments and Experimental Techniques. — V.37. № 5. Part 1. 1994. -P.581-591.

dic.academic.ru

Томографы. История создания томографов. История томографии и томографов.

Томографы. История томографов.

 

Томографы.

Томограф - это аппарат (устройство) для получения изображений внутреннего строения, и состояния, объекта с использованием магнитно-резонансной томографии (МРТ).

 

Принципы работы томографов.

Томография - это получение послойного изображения внутренней структуры объекта.

Магнитно-резонансная томография (МРТ) - это способ получения послойных томографических медицинских изображений для исследования внутренних органов и тканей с использованием явления ядерного магнитного резонанса.

Способ магнитно-резонансной томографии (МРТ)  основан на измерении электромагнитного отклика атомных ядер, чаще всего ядер атомов водорода, а именно на возбуждении их определённым сочетанием электромагнитных волн в постоянном магнитном поле высокой напряжённости.

 

История томографии и томографов.

В 1946 году Феликс Блох из Стенфордского университета, и Эдвард Парселл из Гарвардского университета, независимо друг от друга открыли явление ядерного магнитного резонанса. В 1952 году оба они были удостоены Нобелевской премии по физике «за развитие новых методов для точных ядерных магнитных измерений и связанные с этим открытия».

Учеными было доказано, что ядра некоторых элементов периодической системы, помещенные в магнитное поле способны поглощать энергию в радиочастотном диапазоне с последующим ее излучением. Это явление получило название ядерного магнитного резонанса.

В период с 1950 по 1970 годы, ЯМР развивался и использовался, в основном, для химического молекулярного анализа.

В 1972 году были проведены клинические испытания первого компьютерного томографа (КТ), основанного на рентгеновском излучении. Испытания прошли успешно, и показали эффективность использования томографов в медицинских исследованиях.

В 1973 году, профессор химии и радиологии Пол Лотербур опубликовал в журнале Nature статью «Создание изображения с помощью индуцированного локального взаимодействия; примеры на основе магнитного резонанса». Чуть позже другой ученый Питер Мэнсфилд усовершенствовал математические алгоритмы получения изображения. В 2003 году обоим исследователям была присуждена Нобелевская премия по физиологии и медицине за их открытия, касающиеся метода МРТ.

Но первенство Пола Лотербурга, многими оспаривается.

Так, ощутимый вклад в создание современной магнитно-резонансной томографии внёс также американский учёный армянского происхождения Реймонд Дамадьян, один из первых исследователей принципов МРТ, держатель патента на МРТ и создатель первого коммерческого МРТ-сканера. В 1971 году Реймондом Дамадьяном была сделана публикация под названием «Обнаружение опухоли с помощью ядерного магнитного резонанса». Имеются сведения, что это именно он изобрёл само устройство МРТ.

Кроме того, ещё в 1960 году в СССР изобретатель В. А. Иванов направил в Комитет по делам изобретений и открытий заявку на изобретение, где были подробно обозначены принципы метода МРТ. Однако авторское свидетельство «Способ определения внутреннего строения материальных объектов» № 1112266 на эту заявку, с сохранением даты приоритета её подачи, было выдано В. А. Иванову только в 1984 году.

Некоторое время при работах использовался термин ЯМР-томография, который в 1986 году был заменён на МРТ.

 

Современные томографы.

Современные томографы делают возможным неинвазивно (без оперативного вмешательства) исследовать работу практически всех внутренних органов, измерять скорость кровотока, тока спинномозговой жидкости, определять уровень диффузии в тканях, видеть активацию коры головного мозга при функционировании органов, за которые отвечает данный участок коры головного мозга. Провести такие исследования без томографов невозможно.

 

Томограф - аппарат для магниторезонансной томографии.

 

Томографы. История создания томографов.

Женский сайт: Я-самая-красивая.рф (www.i-kiss.ru)

www.i-kiss.ru

Томограф Википедия

МРТ-изображение головы человека

Магни́тно-резона́нсная томогра́фия (МРТ) — способ получения томографических медицинских изображений для исследования внутренних органов и тканей с использованием явления ядерного магнитного резонанса. Способ основан на измерении электромагнитного отклика атомных ядер, чаще всего ядер атомов водорода[1], а именно, на возбуждении их определённым сочетанием электромагнитных волн в постоянном магнитном поле высокой напряжённости.

История[ | ]

Годом основания магнитно-резонансной томографии (МРТ) принято считать[2] 1973 год, когда профессор химии Пол Лотербур опубликовал в журнале Nature статью «Создание изображения с помощью индуцированного локального взаимодействия; примеры на основе магнитного резонанса»[3]. Позже Питер Мэнсфилд усовершенствовал математические алгоритмы получения изображения. В 2003 году обоим исследователям была присуждена Нобелевская премия по физиологии или медицине за их открытия, касающиеся метода МРТ. Однако вручению этой премии сопутствовал скандал, как бывало в ряде случаев, по поводу авторства открытия[4].

В создание магнитно-резонансной томографии известный вклад внёс также американский учёный армянского происхождения Реймонд Дамадьян, один из первых исследователей принципов МРТ, держатель патента на МРТ и создатель первого коммерческого МРТ-сканера. В 1971 году он опубликовал свою идею под названием «Обнаружение опухоли с помощью ядерного магнитного резонанса». Имеются сведения, что именно он изобрёл само устройство МРТ[5][6][7]. Кроме того, ещё в 1960 году в СССР изобретатель В. А. Иванов направил в Комитет по делам изобретений и открытий заявку на изобретение, где по появившимся в начале 2000-х годов оценкам специалистов были подробно обозначены принципы метода МРТ[8][9]. Однако авторское свидетельство «Способ определения внутреннего строения материальных объектов» № 1112266 на эту заявку, с сохра

ru-wiki.ru

Что такое МРТ открытого и закрытого типа: методика, показания

Магнитно резонансная томография или сокращенно МРТ – это современный безопасный и эффективный метод диагностики, позволяющий специалистам точно определить заболевание, патологию, травму или другие нарушения в работе органов человеческого тела. Проще говоря, МРТ это сканирование, но с другим принципом действия в отличие от рентгенографии и КТ.

Магнитно резонансная томография имеет ряд преимуществ перед другими методами диагностики, а также показания и противопоказания к проведению. Предварительная расшифровка результатов исследования проводится специалистом-радиологом после процедуры. Более точное и конкретизированное объяснение результатов МРТ делается врачом с учетом данных анамнеза и клинической картины.

Принцип действия и преимущества перед другими методами диагностики

Принцип действия МРТ сканера основывается на особенностях действия магнитного поля и магнитных свойствах тканей тела. Благодаря взаимодействию ядерно-магнитного резонанса и ядер атомов водорода, во время обследования на экран компьютера выводится послойное изображение органов человеческого тела. Таким образом удается не только дифференцировать одни органы и ткани от других, но и зафиксировать наличие даже незначительных нарушений, опухолевых и воспалительных процессов.

Принцип работы МРТ позволяет точно оценить состояние мягких тканей, хрящей, мозга, органов, дисков позвоночника, связок – тех структур, которые в значительной степени состоят из жидкости. В то же время, МРТ в медицине меньше используется, если необходимо исследование костей или тканей легких, кишечника, желудка – структур, содержание воды в которых минимально.

Аппарат томографии закрытого типа

Благодаря тому, как работает МРТ, можно выделить ряд преимуществ данного вида исследования перед другими:

  • В результате обследования удается получить детализированное изображение. Поэтому данная методика считается наиболее эффективной для раннего обнаружения опухолей и очагов воспаления, исследования нарушений ЦНС, опорно-двигательной системы, органов брюшной полости и малого таза, мозга, позвоночника, суставов, кровеносных сосудов.
  • Магнитная томография позволяет провести диагностику в тех местах, где КТ не эффективно из-за перекрытия обследуемого участка костными тканями или вследствие нечувствительности КТ к изменениям плотности тканей.
  • Во время процедуры не происходит ионизирующее облучение пациента.
  • Можно получить не только изображение структуры тканей, но и МРТ показания их функционривания. Например, скорость кровотока, тока спинномозговой жидкости и мозговой активности фиксируются при помощи функциональной магнитно резонансной томографии.
  • Возможность проведения контрастного МРТ. Контрастное вещество повышает диагностический потенциал процедуры.
  • МРТ открытого типа позволяют проходить обследования пациентам с боязнью замкнутого пространства.

Еще одно преимущество — при постановке диагноза практически исключены ошибки. Если пациента волнует вопрос: «Может ли МРТ ошибаться?», то ответ получается немного неоднозначным. С одной стороны данная процедура является одним из самых точных методов диагностики. С другой стороны ошибки могут произойти на этапе расшифровки результатов и постановки диагноза врачом.

Классификация современных магнитных томографов

Большинство пациентов настороженно относятся к аппаратам магнитной томографии, так как не знают чего ожидать во время процедуры и боятся, что им станет плохо в замкнутом пространстве. Для других людей стандартное исследование недоступно из-за их веса (более 150 кг.), наличия психологических расстройств или детского возраста.

Однако, не все знают, что современные ученые-технологи уже давно решили и эти проблемы, разработав разные виды томографов:

  • Сканер закрытого типа;
  • Сканер МРТ открытого типа.

В большинстве медицинских учреждений установлены стандартные аппараты МРТ закрытого типа, то есть те, где пациент во время исследования находится в «туннеле». Такое оборудование считается наиболее надежным, так как напряженность магнитного поля в них достаточно высокая.

Но в некоторых клиниках устанавливают МРТ открытого типа. Такие аппараты считаются не такими надежными из-за низкой напряженности магнитного поля. Но с каждым годом технологии совершенствуются, и томограф открытого типа уже нельзя отнести к менее информативным или недостаточно мощным. Тем более, что такой аппарат имеет следующие преимущества:

  1. Конструкция томографа не предполагает наличия задвижного стола, что позволяет обследовать пациентов со значительной массой тела.
  2. Во время исследования пациент находится не в замкнутом пространстве. Это позволяет значительно снизить психологический дискомфорт, исключить приступы паники и клаустрофобии.
  3. При некоторых травмах специфическая фиксация конечностей делает невозможным помещение пациента в томограф закрытого типа. Поэтому открытые типы МРТ – единственный способ провести диагностику возможных травм внутренних органов, мозга.

Допустимость обследования пациента на открытом или закрытом томографе значительно расширяет возможности врачей в сложных или нестандартных случаях.

Показания к проведению процедуры

Для чего делают МРТ, и в каких ситуациях такой метод исследования будет эффективным? Как уже отмечалось, магнитная томография позволяет провести диагностику широкого ряда заболеваний и состояний. Все виды МРТ исследований и показания к их проведению можно классифицировать в зависимости от обследуемых органов/систем:

  • Головной мозг: нарушение кровообращения в мозгу, подозрения на опухолевые поражения, наблюдение за состоянием мозга после хирургического вмешательства, мониторинг возможных рецидивов опухолевых процессов, подозрения на наличие очагов воспаления, эпилепсия, поражения вследствие артериальной гипертензии, травма головы.
  • Височно-нижнечелюстные суставы: диагностика состояния дисков суставов, оценка эффективности хирургического лечения, неправильный прикус, подготовка к проведению ортодонтического лечения.
  • Глаза: подозрения на наличие опухоли, травмы, воспалительные процессы, диагностика состояния слезных желез после травм.
  • Область носа, рта: гайморит, подготовительные манипуляции перед проведением пластических операций.
  • Позвоночный столб: различные дегенеративные изменения в структуре позвоночника (например, остеохондроз), защемление корешков нервов, врожденные патологии, травмы и оценка эффективности лечения после травм, подозрения на опухолевые процессы, остеопороз.
  • Кости и суставы: кости, мягкие ткани, суставы – травмы (в том числе спортивные), возрастные изменения, воспалительные процессы, подозрения на наличие опухоли, травмы мышц, сухожилий, ревматоидный артрит.
  • Брюшная полость: патология внутренних органов.
  • Органы малого таза: аденома, рак простаты, оценка распространения опухолевых поражений, предоперационная подготовка, оценка состояния мочевого пузыря, мочеточников, прямой кишки, яичников, мошонки, миома матки, аномалии развития органов малого таза.

Также в случае надобности проводят обследование сосудов головного мозга, шеи, грудной области; артерий, вен, щитовидной железы. При подозрении на наличие опухолевых поражений или метастазов может быть обследовано все тело пациента.

Также показаниями к проведению МРТ могут стать инфаркт, порок или ишемическая болезнь сердца.

Противопоказания к проведению процедуры

Многих пациентов волнует, есть ли противопоказания к МРТ. Конечно же, такие ограничения для томографии существуют, как и для любой другой медицинской манипуляции.

Весь перечень противопоказаний к проведению МРТ можно разделить на абсолютные и относительные. К абсолютным относятся наличие металлического инородного тела, протеза или электромагнитного импланта, кардиостимулятора. Если проводится МРТ с контрастированием — почечная недостаточность и аллергия на контрастное вещество.

Наличие этих факторов делает проведение процедуры абсолютно невозможным. Под относительными противопоказаниями подразумеваются состояния или обстоятельства, которые со временем могут пройти/измениться, и проведение обследования становится возможным.

Относительные противопоказания:

  1. Первые 3 месяца беременности.
  2. Психические проблемы, шизофрения, клаустрофобия, панические состояния.
  3. Тяжелые заболевания в стадии декомпенсации.
  4. Наличие у пациента татуировок, которые были выполнены с применением красителей на основе металлических соединений.
  5. Сильная боль, вследствие чего человек не может соблюдать полную неподвижность.
  6. Состояние опьянения – алкогольного или наркотического.

Является ли детский возраст пациента противопоказанием и можно ли делать МРТ детям, если да – с какого возраста? Специалисты на эти вопросы отвечают, что детский возраст не является помехой для проведения исследования. То есть делается МРТ даже новорожденным младенцам. Однако, с маленькими детьми существует другая проблема – их очень трудно заставить пребывать в неподвижном состоянии. Особенно долгое время, тем более в замкнутом пространстве. Есть несколько решений данной проблемы, например, предварительная беседа с ребенком или применение наркоза. МРТ исследование под наркозом делается и взрослым в тех случаях, когда процедуру провести крайне необходимо, но человек страдает клаустрофобией или приступами паники.

Подготовительные мероприятия

Общая подготовка к МРТ – важный этап исследования, который нельзя игнорировать. От того, насколько точно пациент будет следовать рекомендациям специалистов, зависит успешность процедуры и точность результатов.

Подготовка к исследованию начинается с обязательной консультации у терапевта. Врач уточнит данные анамнеза, проведет внешний осмотр, прояснит вопрос с противопоказаниями, подробно расскажет, как делают МРТ, даст направление на исследование конкретных проблемных зон.

Подготовка к МРТ также включает оценку собственного состояния. Пациент должен быть готов к тому, что будет находиться в замкнутом, шумном пространстве некоторое время. Если человек предполагает, что у него может начаться паника, он должен заранее заручиться поддержкой близкого человека. Родственник или супруг/а также помогут доехать домой после процедуры, если перед обследованием пациенту дадут седативные препараты для успокоения. МРТ под наркозом также требует присутствия близкого человека, который доставит пациента домой после исследования.

МРТ подготовка включает снятие (с себя и с одежды) всех металлических предметов – булавок, пирсинга, сережек и других украшений, съемных имплантов и протезов, шпилек, белья с металлическими вставками и т.д.

Перед процедурой нужно сходить в туалет, нельзя употреблять спиртное и наркотические вещества. Можно ли есть перед МРТ, принимать обычные лекарства? Да, если предстоит исследование головного мозга, суставов, глаз, носоглотки или позвоночника.

Некоторые виды томографического исследования требуют, чтобы была произведена специальная подготовка к МРТ.

Например, перед исследованием органов малого таза нужно помочиться за 3 часа до процедуры и больше этого не делать. За 60 минут перед сеансом выпить пол литра простой воды, так мочевой пузырь будет наполнен наполовину, что и требуется для правильной диагностики. Накануне вечером нужно полностью очистить кишечник с помощью клизмы или слабительного.

МРТ органов брюшной полости делается только натощак, поэтому вопрос о том, можно ли кушать перед процедурой, в данном случае не уместен. Исключения составляют ситуации, когда сеанс нельзя провести в утренние часы. В таком случае допустимо очень легко позавтракать. Очищение кишечника накануне, прием спазмолитиков за 30 минут перед сеансом – очень желательно.

Подготовка детей к исследованию на магнитном томографе

Физически детей к проведению процедуры готовят так же, как и взрослых. Если ребенок уже в таком возрасте, когда понимает, что от него хотят, и слушается родителей (6-7 лет), нужно рассказать ему, как подготовиться к МРТ самостоятельно. В случае необходимости – помочь.

Подготовка ребенка к МРТ головного мозга на аппарате открытого типа

Психологическая подготовка ребенка – необходимый предварительный этап. Нужно рассказать малышу, зачем делать МРТ, что его ждет во время этой процедуры, какие ощущения могут возникнуть, как подавить негативные мысли и страхи. Также нужно предупредить ребенка о том, сколько по времени делают МРТ и о том, что все это время он должен быть максимально неподвижным.

Если родители видят, что ребенок психологически не готов, ощущает сильный страх или есть другие сопутствующие факторы (сильная боль, эпилепсия, судорожные приступы), вероятно, придется применить глубокую седацию или поверхностный наркоз.

Как проходит сеанс магнитно резонансной томографии

Для того, чтобы во время сеанса обследования не произошло никаких неожиданностей и неприятных сюрпризов, пациенту нужно приблизительно представлять себе как делают МРТ. Стандартная процедура включает следующие этапы:

  1. Пациента просят раздеться и снять с тела все посторонние предметы, включая парик, съемные протезы и слуховой аппарат, украшения и т.д. На смену врач выдаст одноразовую накидку.
  2. Пациент принимает горизонтальное положение на специальном задвижном столе. Затем стол задвигается в тоннель аппарата. С современными томографами возможны вариации этого этапа. Например, в случае использования томографа открытого типа или аппарата предполагающего сидячее положение.
  3. Сколько по времени длится МРТ, зависит от вида исследования. В среднем – от 20 до 120 минут. Все это время пациент должен поддерживать абсолютную неподвижность исследуемой области тела.
  4. Во время сеанса томографии пациент слышит шум или гудение, возможно ощущение легкой вибрации. Чтобы облегчить нахождение в замкнутом пространстве лучше закрыть глаза и максимально расслабиться.

После окончания сеанса пациента могут попросить некоторое время подождать, чтобы удостоверится, что все прошло успешно, полученных данных достаточно и дополнительные манипуляции не требуются. После этого пациенту возвращают личные вещи и одежду – сеанс магнитно резонансной томографии окончен.

Отдельного внимания требует конкретизация того, как проходит процедура МРТ в случае применения наркоза или контрастных веществ.

Особенности проведения МРТ пациентам под наркозом

МРТ под наркозом может быть двух видов:

  • Глубокая седация с применением современных лекарственных препаратов-транквилизаторов. Помогает значительно успокоить пациента, снять тревогу, купировать панические приступы.
  • Наркоз, который делается с помощью внутривенной инъекции или ингаляции. Такой метод может потребовать дополнительной вентиляции легких и подключения аппаратов наблюдения за состоянием жизненных функций.

Обычно действие наркоза проходит уже через 30-60 минут после окончания сеанса исследования. Перед наркозом нельзя есть в течение 9, а детям до 6 лет – 6 часов. Пить можно только чистую воду и чай, маленькими порциями. Прием жидкости прекратить за 2 часа до процедуры.

После наркоза покидать клинику можно только с сопровождающим, самостоятельное управление транспортным средством категорически запрещено.

Магнитно резонансная томография с контрастом

Инжектор для введения контрастного вещества во время исследования

Что такое МРТ с контрастом? Это такая же процедура, как и стандартное МРТ, только для повышения информативности процедуры в вену пациента вводят безопасное нетоксичное вещество. В большинстве случаев это необходимо при диагностике опухолевых поражений. Таким образом удается провести наиболее развернутое исследование, детально изучить размеры опухоли, ее структуру и степень распространения.

Однако, опухоль – не единственная причина для проведения данного вида процедуры. Для обследования с контрастным усилением существует целый ряд показаний.

Противопоказания – беременность, лактация, аллергия (очень редкие случаи).

Никаких последствий и побочных реакций после сеанса томографии с контрастом пациент не испытывает.

Результаты магнитно резонансного исследования

То, что показывает МРТ, то есть результаты обследования, будут готовы в течение 1 или 2 дней. Если в организме все нормально, то результаты покажут, что все органы и ткани организма находятся на своих местах, имеют стандартные размеры, форму, структуру, плотность. Магнитно резонансная томография также покажет, что в теле нет злокачественных или доброкачественных новообразований, кровотечений, тромбов, воспалительных или инфекционных процессов.

Рентгенологи делают заключение по МРТ исследованию

Если же врач обнаружит какие-либо нарушения – это будет отображено в заключении и истории болезни.

Подведем итоги

МРТ – самый современный, один из наиболее точных и безопасных неинвазивных методов исследования человеческого организма. Сеанс магнитной томографии абсолютно безболезненный и подходит для обследования даже маленьких детей. То, что может показать МРТ, помогает врачу диагностировать любую проблему со здоровьем или подтвердить ее отсутствие.

checkupadviser.ru

томограф - это... Что такое томограф?

прибор неразрушающего послойного исследования (томографии) внутренней структуры объекта посредством многократного его просвечивания в различных пересекающихся направлениях (т. н. сканирующее просвечивание). По виду просвечивающего излучения различают электромагнитную томографию (напр., рентгеновскую, гамма-томографию и магнитную или ядерно-магнитно-резонансную), пучковую томографию (напр., протонную), а также ультразвуковую и др. С помощью томографии получают изображения слоёв толщиной до 2 мм. Обработка сигналов осуществляется на компьютере. Наиболее разработана рентгеновская томография, появившаяся в кон. 1960-х гг. (остальные виды позднее).

Томография используется в медицинской диагностике, геофизике, промышленной интроскопии и т. д. В медицине благодаря высокой точности и относительной безвредности получила применение также ядерно-магнитно-резонансная томография, использующая диапазон сверхвысоких частот. Рентгеновские лучи имеют высокую проникающую способность, однако ослабляются, проходя через вещество. Их энергия уменьшается тем сильнее, чем плотнее встречающийся на их пути материал. На этих свойствах основана рентгенодиагностика – исследование внутренних органов с помощью рентгеновского аппарата. Основными частями рентгеновского томографа являются источник рентгеновского излучения, детекторы с фотоэлектронными умножителями и специализированный компьютер. В процессе исследования излучающая рентгеновская трубка совершает оборот вокруг исследуемого объекта. Наличие участков различной плотности на пути пучка излучения вызывает изменение его интенсивности и, следовательно, сигнала детектора. С помощью обработки этих сигналов на компьютере получают распределение плотностей в исследуемом слое объекта. Однако рентгеновское излучение оказывает неблагоприятное воздействие на организм. Поэтому всё шире применяют другие виды томографии, напр. ультразвуковую. Исследование органов и тканей с помощью ультразвука – механических колебаний высокой частоты (от 2 до 20 МГц) безопасно. Датчик ультразвука состоит из нескольких пьезоэлектрических элементов, которые превращают акустические и механические колебания в электрические сигналы и обратно. Датчик прикладывают к поверхности кожи, на которую наносится слой геля, обеспечивающий хороший акустический контакт. На датчик подаётся электрический сигнал, который преобразуется им в механические колебания. Они распространяются в глубь тканей. На границах между тканями волны преломляются и отражаются. Они создают эхосигнал, возвращающийся к датчику. В датчике эхосигналы вновь превращаются в электрические сигналы и формируют изображение внутренних органов больного на экране ультразвукового аппарата. Соединённый с компьютером, этот аппарат представляет собой ультразвуковой томограф. Компьютерный томограф используется для диагностики заболеваний внутренних органов, в частности головного мозга.

dic.academic.ru

Компьютерная томография и МРТ в чем разница, показания и возможности

Современная диагностическая медицинская наука имеет небывалые возможности для выявления тех или иных заболеваний. Одними из самых эффективных методов считаются магнитно-резонансная и компьютерная томография. Как правило, выбор способа остается за врачом.

Многие пациенты интересуются: компьютерная томография и мрт – в чем разница? Давайте разберемся какие отличия имеют две схожие процедуры.

Содержание:

  1. Принципы работы аппаратов КТ и МРТ
  2. Различия в технических возможностях методик
  3. В каких случаях показана та или иная процедура
  4. Особенности подготовки к проведению обследований
  5. Какая методика является более информативной
  6. Сравнение стоимости процедур

Принципы работы аппаратов КТ и МРТ

Магнитно-резонансная томография (МРТ) и компьютерная томография (КТ) преследуют одну и ту же важную цель – изучить и «отсканировать» внутренние органы и системы человека. На выходе получаем детальные изображения организма «изнутри».

Основой и предшественником к таким методикам выступил обыкновенный рентген. Рентгенография – первый огромный шаг к исследованиям и диагностике. Однако, этот метод не давал полной картины происходящего, поскольку картинка была двухмерной и изображение разных участков накладывались один на другой. Несовершенство рентгена послужило толчком к разработке более информативного оборудования.

Так какая разница между мрт и компьютерной томографией? Два аппарата имеют разные принципы действия и различные физические явления, положенные в основу их работы.

Метод КТ базируется на рентгеновском излучении, которым воздействуют на необходимую область. В отличие от традиционного рентгена, томограф оказывает влияние с разных сторон, а лучи проходят через ткани с разной плотностью. Информация обрабатывается компьютером, после чего получают послойное трехмерное изображение нужного органа, как бы в «срезе».

Для МРТ применяется ядерно-магнитный резонанс. На организм действуют мощным магнитным полем. После этого аппарат отображает электромагнитные импульсы, образующиеся в теле человека. Томограф перерабатывает их в объемное изображение и выводит его на экран монитора.

В отличие от КТ, магнитно-резонансная томография не оказывает лучевого воздействия и может применяться чаще. Длительность процедур разная. МРТ может занять больше времени – до 40-60 минут. Поэтому, при выборе методики учитываются не только показания, но и наличие клаустрофобии.

Различия в технических возможностях методик

Существенная разница между мрт и компьютерной томографией заключается в их технических возможностях и областях исследования. КТ дает отличное изображение физического состояния объекта, тогда как МРТ отображает химическое строение тканей. Эти методы не всегда взаимозаменяемы.

КТ отлично показывает плотность тканей и их изменения. Наилучшим образом с помощью этого метода исследуются костные структуры. Ни один другой способ диагностики не дает в этой области такого точного результата. С его помощью можно обнаружить малейшие переломы, трещины и опухоли в костях, которые не видно на обычном рентгене.

Также с помощью КТ отлично сканируются легкие. Метод информативен при обследовании головного мозга (в частности на наличие травм, инсультов), органов малого таза и брюшной полости.

При обследовании костей МРТ окажется бесполезен. Его специализация – мягкие ткани. Процедура даст информацию о травмах связок, повреждениях суставов и сухожилий. Метод применяют для обнаружения позвоночных грыж, структурных поражений головного мозга, патологий спинного мозга, мышц, хрящей.

Для обследования легких процедура будет бесполезна.

Необходимым условием для получения точного результата выступает спокойствие и неподвижность обследуемого человека. При введении контрастного препарата процедура может занять целый час. Пациентам с неуравновешенной психикой или детям зачастую вводят успокоительное или снотворное.

В каких случаях показана та или иная процедура

Какой способ диагностики выбрать, решается индивидуально в каждой частной ситуации. Делать это должен специалист. Пациент может ознакомиться и принять к сведению информацию о показаниях. Методики являются информативными в случае правильного их выбора.

Компьютерная томография рекомендуется в следующих случаях:

  • диагностика степени повреждений при травмах, авариях
  • опухолевые патологии костной ткани
  • внутренние кровоизлияния вследствие травм, инсультов
  • диагностика состояния щитовидной железы
  • изменения в сосудах (атеросклеротические бляшки, аневризмы)
  • различные заболевания легких
  • обследование головного мозга (травмы, наличие гематом, опухолей)
  • болезни опороно-двигательного аппарата (остеопороз, сколиоз, дистрофические изменения)
  • повреждения костей лица (зубов, челюсти)
  • опухолевые заболевания легких, туберкулез
  • патологии органов брюшной полости
  • диагностика отитов и синуситов

КТ используют для оценки состояния пациента после хирургического вмешательства, исключения патологий в области живота.

Магнитно-резонансная томография показана в таких ситуациях:

  • патологические процессы и опухолевые образования в жировых тканях, мышцах, животе
  • воспаление тканей мозга
  • определение стадий опухолевых заболеваний
  • исследование внутричерепных нервов
  • выявление болезней позвоночника
  • мозговые опухоли
  • пациентам с рассеянным склерозом
  • патологии гипофиза
  • изучение состояния спинного мозга, суставов и связок
  • определение состояния межпозвоночных дисков
  • нарушения кровообращения спинного мозга

МРТ диагностика используется для уточнения диагноза после проведения УЗИ. Метод показан людям, имеющим непереносимость контрастного вещества, которое в некоторых случаях необходимо для процедуры КТ.

Эти два метода нередко применяют после предварительного обследования другими способами. Особенно, когда есть сомнения в диагнозе или при малой информативности прочих методик.

Особенности подготовки к проведению обследований

Особая подготовка к процедуре нужна лишь при исследовании определенных областей организма. В остальных случаях (если иного не оговорил доктор) ничего предварительно делать не нужно.

Для проведения КТ рекомендуется убрать все приспособления, которые возможно снять: очки, протезы, слуховой аппарат, украшения. Процедура разрешена для обследований костей при наличии металлических имплантантов в суставах.

При исследовании некоторых внутренних органов (к примеру, кишечника) потребуется заблаговременное введение контрастного вещества. Исследование брюшной области нередко проводится натощак.

При повышенной возбудимости либо психоэмоциональных расстройствах перед обследованием показан прием седативных препаратов.

Также дополнительной подготовки потребует проведение исследование брюшной зоны и с помощью МРТ. Для этого за несколько дней до процедуры пациенту следует исключить из рациона пищу, которая приводит к метеоризму. А именно: бобовые культуры, свежие овощи и фрукты, цельнозерновой хлеб. Желателен прием энтеросорбентов.

При изучении органов малого таза нужно следить, чтобы перед процедурой мочевой пузырь был наполнен. Для этого достаточно выпить около 0.5 л воды за полчаса до мероприятия.

При прохождении обследования пациент может слышать всевозможные щелчки. Этого не стоит бояться. Звуки связаны с работой оборудования.

Следует учитывать, что если общее время КТ составляет 10-15 минут, то для проведения МРТ иногда необходимо до 40 минут. Второй метод не всегда возможно провести больным, которые постоянно нуждаются в аппаратной поддержке жизненно важных функций. Также метод может не подойди людям с тяжелыми формами клаустрофобии.

Какая методика является более информативной

Нельзя дать однозначного ответа на вопрос «какой способ диагностики эффективнее». Это, в одно и то же время, альтернативные и разные методы исследования. В одном случае лучший результат дает одна процедура, в ином – другая.

МРТ лучше показывает органы, окруженные скелетом, но имеющие высокое содержание жидкости (суставы, мозг (головной и спинной), межпозвоночные диски). Сам костный каркас более информативно отображает КТ. Для внутренних органов (почки, система пищеварения) применяется и тот и другой способ.

Стоит отметить, что для проведения компьютерной томографии необходимо намного меньше времени. А значит, ее целесообразно задействовать в экстренных случаях, когда важна каждая минута (например, после аварий, несчастных случаев).

При магнитно-резонансной томографии отсутствует облучение рентгеновским излучением. Поэтому она считается относительно более безопасной. В свою очередь, МРТ нельзя делать людям с имплантантами из металла и кардиостимулятором.

МРТ более безопасна, а КТ занимает меньше времени. Какую процедуру выбрать, должен определять только лечащий врач. Он учтет особенности пациента, характеристику области исследования и течения болезни. Также берутся во внимание предварительные результаты анализов и прочих обследований (УЗИ, рентгена).

Сравнение стоимости процедур

Оборудование для проведения компьютерной либо магнитно-резонансной томографии крайне дорогостоящее. Цена одной установки может доходить до нескольких млн. долларов. Такой аппарат могут позволить себе далеко не все медицинские учреждения.

Если рентген и УЗИ присутствуют в каждой уважающей себя клинике, то томографы могут быть в единственном экземпляре, особенно в маленьких городах. В селах и ПГТ подобные аппараты нередко и вовсе отсутствуют.

Также нужны хорошие специалисты, которые правильно расшифруют результаты диагностики. Все это в комплексе обусловливает немалую стоимость подобной процедуры. Чем выше имидж, новее аппаратура и лучше обустройство клиники, тем выше будет цена.

Самая низкая стоимость КТ либо МРТ составляет около 30 у.е. Чем обширнее площадь обследования, тем выше цена. При полной диагностике организма, введении контрастного вещества сумма может доходить до 500-1000 у.е. Диагностика каждого органа или системы организма имеет свою четко прописанную стоимость.

Из-за дороговизны подобного исследования, пациентов в первую очередь направляют на более доступные УЗИ и рентген. К МРТ и КТ прибегают в тех случаях, когда у врача остались вопросы по поводу диагноза.

Современные томографы – настоящий прорыв в сфере диагностики заболеваний. Конечно, томография – самая информативная на сегодняшний день методика. Каждый метод имеет свои плюсы и минусы, а также определенные показания и противопоказания. Что выбрать – КТ либо МРТ зависит от конкретного случая и области, которую нужно изучить.

Экстренность ситуации также определяет тип процедуры.

Подробно об отличиях КТ и МРТ - на видео:

vekzhivu.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *