Состав аминокислоты – Урок №54. Аминокислоты, их строение, изомерия и свойства.

Содержание

Аминокислоты — номенклатура, получение, химические свойства. Белки » HimEge.ru

Строение аминокислот

Аминокислоты — гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы: аминогруппу — NH2 и карбоксиль­ную группу —СООН, связанные с углеводородным радикалом.Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа — NH2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа —СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R— они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к

незамени­мым, т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки —NH—СО—, например:

Получаемые в результате такой реакции высокомолекулярные соединения  содержат большое число амидных фрагментов и поэтому получили название полимамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды альфа-аминокислот называются пепти­дами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы —NH—СО— на­зывают пептидными.

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно на­звать также α-аминокислотой:

Способы получения аминокислот

В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

Более подробно про белки.

himege.ru

Аминокислотные комплексы в спортивном питании

   Аминокислотные комплексы играют особую роль в жизни спортсмена. Давайте вместе узнаем, какую.

   Аминокислотные комплексы в спортивном  питании.

   Ученые установили, что аминокислоты чрезвычайно важны для восстановления мышц после тренировок, сохранения мышц во время цикла сушки или похудения, а также роста мышц. Упражнения даже средней интенсивности приводят к расходу 80% всех свободных аминокислот — это подчеркивает важность аминокислотных добавок для быстрого восстановления и дальнейшего мышечного роста. 

   Что такое спортивные аминокислоты?

  Спортивные аминокислоты — это строительный материал для всех белков в организме. Спортивные аминокислоты играют важнейшую роль в организме спортсмена, из них образуются практически все элементы и ткани человеческого организма: мышцы, сухожилия, волосы, кожа, связки. 

Основная масса поступающих в организм спортсмена аминокислот идет на синтез мышечных волокон, меньше аминокислот расходуется на строительство связок и синтез гормонов.

   Для эффективного восстановления и роста мускулатуры в крови постоянно должна находиться необходимая концентрация аминокислот, поэтому так важно правильно принимать аминокислоты именно в то время, когда организм способен их усвоить с максимальной скоростью и эффективностью. 
   Таким образом, спортивные аминокислоты призваны обеспечить сбалансированный аминокислотный состав организма спортсмена. Сегодня доступны разнообразные аминокислотные смеси и комплексы, также аминокислоты выпускаются отдельно (например, глютамин, L-Карнитин), либо в составе других продуктов спортивного питания.

   Всего существует 20 протеиногенных аминокислот, но некоторые аминокислоты человек не может синтезировать из-за отсутствия соответствующего фермента. Таких аминокислот 8 для взрослых и 10 для детей.

   Незаменимыми для взрослого здорового человека являются 8 аминокислот: валин, лейцин, изолейцин, треонин, метионин, триптофан, лизин и фенилаланин. Для детей незаменимыми аминокислотами также являются аргинин и гистидин. 

 Описание незаменимых аминокислот  

Валин:

  • участвует в обмене азота в организме,
  • необходим для метаболизма в мышцах,
  • восстанавливает поврежденные ткани,
  • является источником энергии.

 Лейцин:

  • защищает мышечные ткани,
  • восстанавливает кости, кожу и мышцы,
  • понижает уровень сахара в крови,
  • стимулирует синтез гормона роста,
  • является источником энергии.

 Изолейцин:

  • необходим для синтеза гемоглобина,
  • регулирует уровень сахара в крови,
  • восстанавливает мышечную ткань,
  • участвует в процессах энергообеспечения,
  • увеличивает выносливость.

 Треонин:

  • участвует в синтезе коллагена и эластина,
  • участвует в белковом и жировом обмене,
  • помогает работе печени (препятствует отложению жиров в печени),
  • стимулирует иммунитет,
  • треонин находится в сердце, центральной нервной системе и скелетной мускулатуре.

 Метионин:

  • участвует в переработке жиров, предотвращая их отложение в печени и в стенках артерий,
  • способствует пищеварению,
  • защищает от воздействия радиации,
  • помогает при остеопорозе и химической аллергии,
  • метионин применяется в комплексной терапии ревматоидного артрита.

 Триптофан:

  • используется для синтеза серотонина (одного из важнейших нейромедиаторов),
  • улучшает сон,
  • стабилизирует настроение,
  • уменьшает аппетит,
  • увеличения выброс гормона роста,
  • снижает вредное воздействие никотина.

 Лизин:

  • входит в состав практически всех белков,
  • необходим для формирования костей и роста детей,
  • способствует усвоению кальция,
  • поддерживает обмен азота,
  • участвует в синтезе антител, гормонов и ферментов,
  • участвует в формировании коллагена и восстановлении тканей,
  • увеличивает мышечную силу и выносливость,
  • способствует увеличению объёма мышц (анаболик),
  • улучшает краткосрочную память,
  • предотвращает развитие атеросклероза,
  • утолщает структуру волос,
  • предотвращает развитие остеопороза,
  • улучшает эрекцию.

 Фенилаланин:

  • фенилаланин в организме может превращаться в другую аминокислоту — тирозин, которая используется в синтезе допамина и норэпинефрина (двух основных нейромедиаторов),
  • влияет на настроение,
  • уменьшает боль,
  • улучшает память и способность к обучению,
  • подавляет аппетит.

 Аргинин:

  • замедляет рост опухолей, в том числе раковых, за счет стимуляции иммунной системы организма,
  • способствует дезинтоксикации печени,
  • содержится в семенной жидкости,
  • способствует повышению потенции,
  • содержится в соединительной ткани и в коже,
  • участвует в обмене веществ в мышечной ткани,
  • расширяет сосуды и усиливает их кровенаполнение,
  • снижает кровяное давление,
  • способствует снижению уровня холестерина в крови,
  • препятствует образованию тромбов,
  • стимулирует синтез гормона роста и ускоряет рост у детей и подростков,
  • увеличивает массу мышечной ткани и уменьшает массу жировой ткани,
  • способствует нормализации состояния соединительной ткани.

 Гистидин:

  • входит в состав активных центров множества ферментов,
  • способствует росту и восстановлению тканей,
  • важен для здоровья суставов,
  • содержится в гемоглобине,
  • недостаток гистидина может вызвать ослабление слуха.

 

 

  К чему приводит недостаток или отсутствие незаменимых аминокислот в организме?

 Недостаток незаменимых аминокислот вызывает такие проблемы, как:

  • нарушение обмена веществ,
  • остановку роста,
  • потерю массы тела,
  • снижение иммунитета.

Виды аминокислотных комплексов

   Аминокислотные комплексы отличаются по составу, соотношению аминокислот и степени гидролизации. Аминокислоты в свободной форме, обычно изолированные (глютамин, аргинин, глицин и другие), однако встречаются и комплексы. Гидролизаты — это разрушенные белки, в которых находятся короткие аминокислотные цепочки, способные быстро усваиваться. Ди- и трипептидные формы — это по сути тоже гидролизаты, только цепочки аминокислот более короткие, и состоят из 2 и 3 аминокислот соответственно, усваиваются очень быстро. BCAA — это комплекс из трех аминокислот — лейцина, изолейцина и валина, которые наиболее востребованы в мышцах и всасываются очень быстро.

 Формы аминокислот в спортивном питании

   Аминокислоты выпускаются в виде порошка, таблеток, растворов, капсул, однако все эти формы равнозначны по эффективности. Также существуют инъекционные формы аминокислот, которые вводятся внутривенно. В виде инъекций  применять аминокислоты не рекомендуется, так как это не имеет никаких преимуществ перед оральным приемом, зато есть большой риск осложнений и побочных реакций.

Как принимать аминокислотные комплексы

Когда принимать аминокислоты

   При наборе мышечной массы эффективнее принимать аминокислоты только до и после тренировки, а также дополнительно утром, так как в эти моменты требуется поступление аминокислот. В другое время разумнее принимать протеин. При похудении аминокислоты можно принимать чаще: до и после тренировок, с утра и в перерывах между едой, так как цель их употребления — подавить катаболизм, снизить аппетит и сохранить мышечный тонус.

 Оптимальные дозы

   Аминокислоты в бодибилдинге применяются в очень широком диапазоне доз. Желательно чтобы однократная доза была не менее 5 г, хотя максимальный результат достигается при употреблении 10 — 20 г однократно. При покупке аминокислотных комплексов обращайте внимание на размеры доз добавки.

 

легкая тренировка

средняя тренировка

мощная тренировка

утром (ежедневно)

 

1-2 таблетки полных АК комплексов

2-5 таблеток полных АК комплексов

за 30 мин. до тренировки

 

1-2 таблетки ВСАА

2-5 таблеток ВСАА

сразу после тренировки

 

3-5 таблеток ВСАА

5-8 таблеток ВСАА

через 15-30 мин. после тренировки

1-2 таблетки полных АК комплексов

2-5 таблеток полных АК комплексов

4-8 таблеток полных АК комплексов

вечером (ежедневно)

 

1-2 таблетки полных АК комплексов

2-4 таблетки полных АК комплексов

Сочетание с другими добавками

   Аминокислоты можно сочетать со всеми видами спортивного питания, однако их не всегда можно смешивать (пить одновременно). Не принимайте вместе аминокислотные комплексы с протеином, гейнером, заменителем пищи или едой, так как это снижает скорость их усвоения, а значит теряется смысл их применения. Внимательно читайте рекомендации производителя.

   Спортивные аминокислоты являются наиболее востребованными, так как содержат весь спектр заменимых и незаменимых аминокислот. Свой выбор при покупке следует остановить на достаточно известных брендах производителей спортивного питания, так как в этом случае можно быть уверенным в безопасности и качестве продукта. 

 

 

strongbody.md

Аминокислоты

В предыдущей статье мы говорили, что белок – грубо говоря, набор аминокислот. Так вот, в состав нашего организма входят 20 различных аминокислот, которые в данной статье будут рассмотрены отдельно. Принято классифицировать аминокислоты на заменимые и незаменимые.

Заменимые аминокислоты – это такие аминокислоты, которые могут поступать в наш организм с белковой пищей либо же образовываться в организме из других аминокислот. К заменимым аминокислотам относятся: аргинин, глютаминовая кислота, глицин, аспарагиновая кислота, гистидин, серин, цистеин, тирозин, аланин, пролин.

Незаменимые аминокислоты – это такие аминокислоты, которые наш организм не может самостоятельно вырабатывать, они обязательно должны поступать с белковой пищей. К незаменимым аминокислотам относятся: валин, метионин, лейцин, изолейцин, фенилаланин, лизин, триптофан, треонин.

Таблица заменимых / незаменимых аминокислот

Аминокислоты BCAA

Из всех вышеупомянутых незаменимых аминокислот, три являются особенно важными для организма – это: валин, лейцин и изолейцин. Данный класс аминокислот имеет разветвленную цепь и широко известен под названием BCAA (Branched Chain Amino Acids). Все три аминокислоты обладают чрезвычайно ценными свойствами, благодаря особому строению молекулы. Среди всех незаменимых аминокислот на долю BCAA приходится 42%, они играют первостепенную роль в белковом обмене и энергетике мышц. Подробнее читайте в статье BCAA.

Теперь поговорим о конкретных аминокислотах, их свойствах и назначении:

Изолейцин – аминокислота группы BCAA, имеющая разветвленную цепь.
Основное назначение – источник энергии для клеток мышц.
При малом содержании в организме изолейцина появляется сонливость и общая вялость, может понижаться уровень сахара в крови (гипогликемия), а при дефиците – теряется мышечная масса.

Лейцин – аминокислота группы BCAA, имеющая разветвленную цепь.
Основное назначение – строительство и рост мышечной ткани, образование белка в мышцах и печени, препятствует разрушению белковых молекул. Также может быть энергетическим источником. Препятствует понижению уровня серотонина, в результате чего организм меньше подвержен усталости.
Недостаток лейцина – результат плохого питания или нехватки витамина B6 в организме.

Валин – группы BCAA, имеющая разветвленную цепь.
Основное назначение – источник энергии для клеток мышц. Препятствует понижению уровня серотонина, в результате чего организм меньше подвержен усталости.
Недостаток валина – результат плохого питания или нехватки витамина B6 в организме.

Лизин – незаменимая аминокислота, основное вещество для выработки карнитина. Усиливает действие аргинина.
Недостаток лизина замедляет рост мышечной массы.

Метионин – незаменимая аминокислота.
Назначение – предотвращение отложения жира в печени, восстановление тканей печени и почек, ускоряет выработку белка в клетках, ускоряет восстановление после тренировок.
Недостаток метионина замедляет рост и развитие организма.

Фенилаланин – незаменимая аминокислота.
Назначение – ускоряет выработку белка, способствует выводу продуктов метаболизма печенью и почками. Фенилаланин – гормон щитовидной железы, который контролирует скорость обмена веществ.
Недостаток фенилаланина замедляет рост и развитие организма.

Треонин – незаменимая аминокислота.
Назначение – выработка антител и иммуноглобулинов, которые обеспечивают нормальное функционирование иммунной системы организма.
При малом содержании треонина энергетические запасы организма быстро исчерпываются. А избыток данной аминокислоты способствует накоплению в организме мочевой кислоты.

Триптофан – незаменимая аминокислота.
В результате приема данной аминокислоты поведение человека становится более уравновешенным, а также увеличивается выработка гормона роста в организме.

Аргинин – заменимая аминокислота.
Назначение – восстановление организма после тяжелых нагрузок, сжигание жира. В результате приема данной аминокислоты понижается содержание холестерина в крови.

Гистидин – заменимая аминокислота.
Назначение – один из важнейших регуляторов свертывания крови. Наличие данной аминокислоты важно для образования гемоглобина крови, белкового обмена, красных и белых кровяных телец. Помимо этого гистидин облегчает и даже преодолевает симптомы аллергии.
Избыток данной аминокислоты может привести к потере цинка, так как гистидин способен связывать этот металл.

Цистеин – заменимая аминокислота.
Данная кислота – важный антиокислитель, она необходима для роста ногтей и волос. Возможна выработка цистеина из метионина.

Тирозин – заменимая аминокислота.
Назначение – обеспечение нормальных функций щитовидной железы, нормальное функционирование надпочечников и образование красных и белых телец крови. Применение данной аминокислоты усиливает выработку гормона роста и оказывает общий стимулирующий эффект на организм.

Аланин – заменимая аминокислота.
Назначение – сырье для выработки глюкозы. В организме аланин образуется из аминокислот ВСАА.

Аспарагин и аспарагиновая кислота – заменимая аминокислота.
В организме из аспарагина образуется аспарагиновая кислота, которая нужна для выработки ДНК и РНК, она важна для иммунной системы. Применение данной аминокислоты увеличивает запасы гликогена в мышцах, ведь аспарагиновая кислота способствует образованию глюкозы из углеводов.

Глютамин и глютаминовая кислота – заменимая аминокислота.
В организме к глютаминовой кислоте присоединяется аммиак, в результате чего образуется глютамин.
Назначение – поддерживает образование белка и накопление жидкости в клетке. Глютамин оказывает значительное влияние на накопление гликогена в мышцах, а также на их энергетический потенциал.
Глютаминовая кислота – промежуточная ступень распада аминокислот, ее потребление положительно отражается на результатах тренировки.

Глицин – заменимая аминокислота.
Данная аминокислота важна для образования соединительной ткани, которая ослабевает при недостатке глицина.

Пролин – заменимая аминокислота.
Данная аминокислота важна для сердца и суставов, может применяться в качестве источника энергии.

Серин – заменимая аминокислота.
Данная аминокислота важна для энергоснабжения и иммунитета, она играет важнейшую роль в энергетике клеток. Серин отвечает за мыслительные процессы и память человека.

Ориентировочная надежная и оптимальная потребность взрослого человека в незаменимых аминокислотах (г/100 г белка)

* — рекомендации Продовольственного Комитета Всемирной Организации Здравоохранения (ФАО/ВОЗ).

Аминокислотный состав пищевых белков (г/100 г белка)

* — Лимитирующая кислота

Подводя итог всему вышесказанному, еще раз подчеркну, что аминокислоты – это сырье для построения всех белков в нашем организме, без них невозможно развитие и рост мышечной массы. К тому же, они участвуют практически во всех жизненно важных процессах, и Вы просто обязаны обеспечить свой организм необходимым количеством аминокислот, иначе рост мышц будет невозможен.

Информацию о содержании незаменимых аминокислот в конкретных продуктах питания Вы найдете в разделе Таблицы.

С дополнительной информацией об аминокислотах Вы можете ознакомиться в книге «Аминокислоты — строительный материал жизни» (автор: Леонид Остапенко).

В следующей статье мы поговорим о том, что такое Углеводы, какова их роль в нашем организме и как их принимать при занятии бодибилдингом.

© Твой Тренинг (www.tvoytrening.ru)

Материалы данной статьи охраняются законом о защите авторских прав. Копирование без указания ссылки на первоисточник и уведомления автора ЗАПРЕЩЕНО!

tvoytrening.ru

Сколько аминокислот входит в состав белка? Группы и виды аминокислот

Многие из нас знают, что белки необходимы организму, так как в них содержатся аминокислоты. Но далеко не все понимают, что собой представляют эти элементы и почему их наличие в рационе так важно. Сегодня мы выясним, сколько аминокислот входит в состав белка, как они классифицируются и какую функцию выполняют.

Что такое аминокислоты?

Итак, аминокислоты (аминокарбоновые к-ты) – это органические соединения, которые являются основным элементом, образующим структуру белка. Белки, в свою очередь, принимают участие во всех физиологических процессах человеческого организма. Они формируют кости, сухожилия, связки, внутренние органы, мышцы, ногти и волосы. Белки становятся частью организма в процессе синтеза аминокислот, пришедших с пищей. Следовательно, не белок является важным питательным веществом, а именно аминокислоты. И не все белки одинаково полезны, ведь у каждого из них свой уникальный состав этих самых кислот.

Сколько аминокислот входит в состав белка

Структура белков довольно сложна, рассмотрим ее на базовом уровне. Мы знаем, что аминокарбоновые кислоты являются своеобразными строительными блоками в здании под названием белок и в мегаполисе под названием человек. Однако не во всех белках есть именно те элементы, которые нам нужны. Если взглянуть на белок под микроскопом, можно увидеть цепочку из аминокислот, которые соединяются пептидными связями. Грубо говоря, звенья этой цепочки служат в нашем организме ремонтным и строительным материалом.

Удивительно, но было время, когда ученые не знали о том, сколько различных аминокислот входит в состав белков. Большинство из них были открыты в 19, а остальные в 20-м веке. Ученым понадобилось 119 лет, чтобы окончательно ответить на вопрос: «Сколько аминокислот входит в состав белка?» Строение каждой из них изучалось еще дольше.

На сегодняшний день известно, что для нормальной жизнедеятельности человеческого организма необходимо 20 протеиногенных аминокарбоновых кислот. Эту двадцатку часто называют мажорными кислотами. С точки зрения химии, их классифицируют по множеству признаков. Но простым обывателям наиболее близка классификация по способности кислот синтезироваться в нашем организме. По этому признаку аминокислоты бывают заменимыми и незаменимыми.

В этой классификации есть некоторые недостатки. К примеру, аргинин в некоторых физиологических состояниях считается незаменимым, но он может синтезироваться организмом. А гистидин восполняется в столь малых количествах, что его все-таки необходимо принимать с пищей.

Теперь, когда мы знаем, сколько видов аминокислот входит в состав белков, рассмотрим подробнее оба вида.

Незаменимые (эссенциальные)

Как вы уже поняли, эти вещества не могут самостоятельно синтезироваться организмом, поэтому их необходимо употреблять с едой. Основное количество незаменимых органических кислот содержится в животных белках. Когда в организме недостает того или иного элемента, он начинает забирать его с мышечной ткани. Этот класс состоит из 8 кислот. Познакомимся с каждой из них.

Лейцин

Эта кислота отвечает за восстановление и защиту мышечных тканей, кожных покровов и костей. Именно благодаря лейцину выделяется гормон роста. Кроме того, эта органическая кислота регулирует уровень сахара в крови и способствует сжиганию жиров. Она содержится в мясе, орехах, бобовых, нешлифованном рисе и зернах пшеницы. Лецитин стимулирует синтез белка, а значит, способствует наращиванию мышечной массы.

Изолейцин

Эта кислота ускоряет выработку энергии, поэтому ее так любят спортсмены. После изнурительных занятий она помогает быстрому восстановлению мышечных волокон. Изолейцин снимает так называемую крепатуру, принимает участие в образовании гемоглобина и регулирует количество сахара. Больше всего изолейцина содержится в мясе, рыбе, яйцах, орехах, горохе и сое.

Лизин

Данная аминокислота играет важную роль в работе иммунной системы. Ее главная задача – синтез антител, которые защищают наш организм от воздействия вирусов и аллергенов. Кроме того, лизин регулирует процесс обновления костной ткани и коллагена, а также гормоны роста. Эту органическую кислоту можно найти в таких продуктах питания, как: яйца, картофель, красное мясо, рыба и кисломолочные продукты.

Фенилаланин

Эта альфа-аминокислота отвечает за нормальную работу центральной нервной системы. Ее недостаток в организме приводит к приступам депрессии и хроническим болезням. Фенилаланин помогает нам концентрироваться и запоминать нужную информацию. Входит в состав препаратов, используемых при лечении психических расстройств, в том числе болезни Паркинсона. Положительно сказывается на работе печени и поджелудочной железы. Аминокислота содержится в: орехах, грибах, курице, молочных продуктах, бананах, абрикосах и топинамбуре.

Метионин

Мало кто знает, сколько аминокислот входит в состав белка, зато многим известно, что метионин активно сжигает жировые ткани. Но это далеко не все полезные свойства данной кислоты. Она влияет на выносливость и работоспособность человека. Если ее в организме недостаточно, это сразу можно понять по коже и ногтям. Метионин встречается в таких продуктах питания, как: мясо, рыба, семена подсолнечника, бобовые, лук, чеснок и кисломолочные продукты.

Треонин

Стремясь узнать, сколько аминокислот входит в состав белка, ученные открыли такое вещество, как треонин, одним из последних. А ведь оно очень даже полезно для человека. Треонин отвечает за все важнейшие системы человеческого организма, а именно за нервную, иммунную и сердечно-сосудистую. Первый признак его недостатка – проблемы с зубами и костями. Больше всего треонина человек получает из молочных продуктов, мяса, грибов, овощей и злаков.

Триптофан

Еще одно важнейшее вещество. Оно отвечает за синтез серотонина, который часто называют гормоном хорошего настроения. Недостаток триптофана можно обнаружить по нарушениям сна, аппетита. Данная кислота также регулирует функцию дыхания и артериальное давление. Она содержится преимущественно в: морепродуктах, красном мясе, птице, кисломолочных продуктах и пшенице.

Валин

Выполняет функцию восстановления поврежденных волокон и следит за обменными процессами в мышцах. При сильных нагрузках может оказывать стимулирующее действие. Также играет роль в умственной деятельности человека. Помогает при лечении печени и головного мозга от негативных воздействий алкоголя и наркотиков. Человек может получить валин из: мяса, грибов, сои, молочных продуктов и арахиса.

Примечательно, что 70% всех органических кислот в нашем организме занимают всего три аминокислоты: лейцин, изолейцин и валин. Поэтому они считаются самыми важными в обеспечении нормальной жизнедеятельности организма. В спортивном питании даже выделили специальный комплекс ВСАА, которые содержит именно эти три кислоты.

Продолжаем отвечать на вопрос о том, сколько мажорных аминокислот входит в состав белка, и переходим к заменимым представителям класса.

Заменимые

Главное отличие этой группы состоит в том, что все ее представители могут образовываться в организме путем эндогенного синтеза. Слово «заменимые» вводит многих в заблуждение. Поэтому часто неосведомленные люди говорят, что эти аминокислоты необязательно употреблять с пищей. Конечно же, это не так! Заменимые кислоты, так же как и эссенциальные, обязательно должны быть в составе каждодневного рациона. Они действительно могут образовываться из других веществ. Но происходит это только в случае, когда рацион составлен неправильно. Тогда часть полезных веществ и эссенциальных кислот затрачивается на воссоздание заменимых кислот. Следовательно, это не совсем благоприятно для организма. Разберем незаменимые кислоты, входящие в «мажорную двадцатку».

Аланин

Способствует ускорению метаболизма углеводов и выведению из печени токсинов. Встречается в таких продуктах питания, как: мясо, птица, яйца, рыба и молочные продукты.

Аспарагиновая кислота

Считается универсальным топливом для нашего организма, так как значительно улучшает обмен веществ. Встречается в молоке, тростниковом сахаре, птице и говядине.

Аспарагин

Пытаясь ответить на вопрос: «Сколько аминокислот входит в состав белка?», ученые в первую очередь открыли именно аспарагин. Было это в далеком 1806 году. Данная кислота принимает участие в улучшении работы нервной системы. Она содержится во всех животных белках, а также орехах, картофеле и злаках.

Гистидин

Является важным строительным элементом всех внутренних органов. Играет едва ли не ключевую роль в образовании красных и белых кровяных телец. Положительно влияет на иммунную систему и половую функцию. Из-за широкого спектра применения, запасы гистидина в организме быстро истощаются. Поэтому важно принимать его с пищей. Содержится в мясных, молочных и злаковых продуктах.

Серин

Стимулирует работу головного мозга и центральной нервной системы. Встречается в таких продуктах, как: мясо, соя, злаки, арахис.

Цистеин

Эта аминокислота в организме отвечает за синтез кератина. Без нее не было бы здоровых ногтей, волос и кожи. Находится в таких продуктах, как: мясо, яйца, красный перец, чеснок, лук и брокколи.

Аргинин

Говоря о том, сколько протеиногенных аминокислот входит в состав белков и какие функции они выполняют, мы убедились в том, что каждая из них важна для организма. Однако есть кислоты, которые, по мнению экспертов, считаются наиболее значимыми. К таковым относится аргинин. Он отвечает за здоровую работу мышц, суставов, кожного покрова и печени, а также укрепляет иммунитет и сжигает жиры. Аргинин часто используют бодибилдеры и те, кто желает похудеть, в составе добавок. В природном виде он встречается в мясе, орехах, молоке, злаках и желатине.

Глютаминовая кислота

Является важным элементом для здоровой работы головного и спинного мозга. Часто продается в виде добавки «Глутамат натрия». Встречается в яйцах, мясе, молочных продуктах, рыбе, моркови, кукурузе, помидорах и шпинате.

Глутамин

Нужен в белках для роста и поддержки мышц. Также является «топливом» головного мозга. Кроме того, глутамин выводит из печени все то, что поступает туда с нездоровой пищей. При термической обработке кислота денатурирует, поэтому, чтобы ее восполнить, нужно употреблять петрушку и шпинат в сыром виде.

Глицин

Помогает крови сворачиваться, а глюкозе — перерабатываться в энергию. Встречается в мясе, рыбе, бобовых и молоке.

Пролин

Отвечает за синтез коллагена. При недостатке в организме пролина начинаются проблемы с суставами. Встречается в основном в животных белках, поэтому является едва ли не единственным веществом, с нехваткой которого сталкиваются люди, не употребляющие мясо.

Тирозин

Отвечает за регулировку артериального давления и аппетит. При недостатке этой кислоты человек страдает быстрой утомляемостью. Чтобы таких проблем не было, нужно есть бананы, семечки, орехи и авокадо.

Продукты, богатые аминокислотами

Теперь вы знаете, сколько аминокислот входит в состав белка. Функции и место нахождения каждой из них вам тоже известны. Отметим главные продукты, употребляя которые, можно не переживать о сбалансированности питания в плане аминокислот.

Яйца. Отлично усваиваются организмом, дают ему большое количество аминокислот и обеспечивают белковую подкормку.

Молочные продукты. Способны обеспечить человека множеством полезных веществ, спектр которых, кстати говоря, не ограничивается органическими кислотами.

Мясо. Пожалуй, первый источник белка и входящих в него веществ.

Рыба. Богата на белок и отлично усвояема организмом.

Многие абсолютно уверены, что без продуктов животного происхождения нельзя обеспечить организм должным количеством белка. Это совершенно неверно. И доказательством тому является огромное количество вегетарианцев с прекрасной физической формой. Среди растительных продуктов главными источниками аминокислот являются: бобовые, орехи, крупы, семена.

Заключение

Сегодня мы узнали, сколько аминокислот входит в состав белка. Группы веществ и подробное описание их представителей помогут вам сориентироваться в составлении рациона здорового питания.

fb.ru

Аминокислоты в продуктах питания | Незаменимые и заменимые аминокислоты

Обратно в Состав продуктов

Во всех живых системах первоочередное значение имеют белки, они же протеины. Все химические и биохимические процессы, поддерживающие жизнь клетки и организма, выполняют исключительно ферменты, молекулы белковой природы. Белки также выполняют строительную функцию, как на уровне клеток, так и на уровне организма в целом. Функциональное разнообразие протеинов обусловлено их пространственной структурой, расположением, но прежде всего их химическим составом.

С химической точки зрения белки являются полимерами, состоящими из аминокислот. Данное название отражает структуру этих веществ, содержащих, по меньшей мере, одну аминогруппу -Nh3 и одну карбоксильную группу -COOH. Различаются они только по строению своего радикала, который, собственно, и определяет их индивидуальные физико-химические свойства.

Природные протеиногенные аминокислоты

Общее число аминокислот в природе составляет около 300, в организме человека – более 60. Однако число аминокислот, из которых происходит синтез белка, всего около 20 (иногда насчитывают 21-22), и их называют протеиногенными аминокислотами, или природными. Из них в процессе синтеза белка и формирования его структуры образуются другие аминокислоты. Эти природные 20 аминокислот запрограммированы в генетическом коде любого организма, от вируса до человека, и именно их последовательность в белковой молекуле-цепочке определяет уникальность всех форм жизни на Земле.

В органах и тканях человека основная роль этих соединений – участие в белковом синтезе, на это уходит подавляющая часть всех поступивших или образовавшихся аминокислот. Но есть и отдельные аминокислоты, которые обладают самостоятельными функциями. Так, тирозин является ответственным за окраску волос, кожи, глаз, придает темный цвет пищевым продуктам, например, ржаному хлебу, так как с его участием синтезируются темноокрашенные пигменты – меланины. Ряд представителей данного класса играет роль медиаторов – веществ, ответственных за передачу нервных импульсов от одной нервной клетки к другой (ацетилхолин, глутаминовая и аспарагиновая кислота, глицин, ГАМК, гистамин, серотонин, норадреналин). Аминокислота глутамин обеспечивает перенос продуктов азотистого обмена в крови человека.

Помимо протеинов, из аминокислот состоят более короткие молекулы, играющие важную роль в организме: олигопептиды. Среди них есть и не очень короткие цепочки аминокислотных остатков, например, гормон инсулин, и совсем короткие, вплоть до дипептидов (или бипептидов), которые состоят всего из двух аминокислотных остатков (для сравнения: белки насчитывают сотни аминокислотных остатков). Важнейшими дипептидами являются карнитин и карнозин, сильнейший природный антиоксидант.

Заменимые и незаменимые аминокислоты

Источником аминокислот в пищевых продуктах являются белки. Все белки пищевых продуктов различаются по своему аминокислотному составу. Это имеет большое значение в подборе полноценных рационов в связи с тем, что ряд аминокислот являются незаменимыми (эссенциальными) — они могут быть получены только с пищевыми продуктами. К незаменимым протеиногенным аминокислотам относятся валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан. В отличие от них, заменимые аминокислоты могут быть синтезированы в организме человека из предшественников. Это глицин, аланин, пролин, серин, цистеин, аспартат, аспарагин, глутамат, глутамин, тирозин. К частично заменимым относят аргинин и гистидин, так как в организме они синтезируются довольно медленно.

Дефицит или полное отсутствие в рационе даже одной незаменимой аминокислоты приводит к отрицательному азотистому балансу, что в свою очередь со временем вызывает тяжелые клинические последствия типа авитаминоза: нарушение деятельности центральной нервной системы, остановку роста и т.д.

Крайне важно отметить, что если в дефиците какая-то одна незаменимая аминокислота, то это приводит к неполному усвоению других. Данная закономерность подчиняется закону Либиха, по которому развитие живых организмов определяется тем незаменимым веществом, которое присутствует в наименьшем количестве.

В каких же продуктах питания содержатся незаменимые аминокислоты? Это все пищевые ингредиенты, богатые белком.

Продукты питания как источники незаменимых аминокислот

Крайне редко аминокислоты представлены в свободном виде. Последнее встречается в специальных пищевых продуктах, например, спортивном питании, куда их непосредственно добавляют в свободном состоянии для более быстрого и полного усвоения. В основном же они поступают в организм в составе белков и затем высвобождаются в ходе гидролиза последних. Высвободившиеся в результате гидролиза аминокислоты или небольшие пептиды уже могут всасываться в кишечнике.

Наиболее важными источниками незаменимых аминокислот в необходимом соотношении являются следующие продукты питания, где содержатся легкоусвояемые протеины: молоко, молочные продукты, яйца, мясо и мясопродукты, рыба, морепродукты, соя, бобовые (горох, чечевица, фасоль, соя), крупы, хлеб, картофель и др.

Наряду с аминокислотным составом, биологическая ценность протеинов определяется и степенью их усвоения после переваривания. Степень переваривания, в свою очередь, зависит, с одной стороны, от состояния организма (активности ферментов, глубины гидролиза в желудочно-кишечном тракте), и с другой стороны, от вида предварительной обработки белков в процессах приготовления пищи (тепловой, гидротермической, СВЧ и проч.). Тепловая обработка, разваривание, протирание и измельчение ускоряют переваривание белка, особенно растительного, тогда как нагревание до очень высоких температур свыше 100°С его затрудняет.


Обратно в Состав продуктов

moydietolog.ru

Аминокислотный состав белков | Медицинские статьи

Основными частями и структурными компонентами белковой молекулы являются аминокислоты. В состав пищевых продуктов входит 20 аминокислот, из них 8 не синтезируются в организме человека и являются незаменимыми факторами питания. К ним относятся: валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, метионин, лизин. Для детей незаменимой аминокислотой является гистидин. Остальные аминокислоты являются заменимыми, т. е. могут синтезироваться в организме (аланин, аспарагиновая кислота, гликол, глицин, глютаминовая кислота, пролин, серии, тирозин, цистин, цистеин). Потребность в заменимых аминокислотах удовлетворяется в основном за счет синтеза в организме и частично за счет поступления их в составе пищи.

Основным критерием в определении биологической ценности и физиологической роли аминокислот является их способность поддерживать рост и синтез белка. Особое значение в этом отношении имеют незаменимые аминокислоты. Исключение из пищевого рациона хотя бы одной из них влечет за собой задержку роста, снижение массы тела и т. д.

Значение незаменимых аминокислот не ограничивается их участием в синтезе тканевых белков. Каждая из них, помимо этого, выполняет в организме важные и сложные функции.

Лизин относится к наиболее важным незаменимым аминокислотам, он является ростовым фактором. Недостаток его в пище приводит к нарушению процессов кроветворения, снижению количества эритроцитов и содержания в них гемоглобина. Нарушается азотистое равновесие. В зерновых продуктах отмечается недостаточное его содержание. Источники: творог, мясо, рыба.

Триптофан является ростовой аминокислотой, связан также с обменом никотиновой кислоты (витамин РР), необходим для ее синтеза в организме. Источники: мясо, рыба, творог, яйца.

Метионин является основным поставщиком метильных групп, которые используются для синтеза холина. Метионин является липотропным веществом (предотвращающим жировое перерождение печени), оказывает влияние на обмен жиров и фосфатидов печени, нормализуя ее состояние. Метионин используется в лечебно-профилактическом питании для лиц, работающих с ионизирующими излучениями и с некоторыми промышленными ядами. Источники: творог, белок яйца, треска, судак, баранина, сельдь.

Изолейцин — отсутствие его в пище приводит к нарушению азотистого баланса, который означает количественную разницу между введением с пищей азота и выведением его в виде конечных продуктов азотистого обмена.

Лейцин — недостаток приводит к задержке роста, снижению массы тела, нарушениям в почках и щитовидной железе.

Особое значение имеет не только поступление с пищей достаточных количеств каждой из аминокислот, но и их правильное соотношение, приближающееся к соотношению незаменимых аминокислот в белках человеческого тела. Оптимальным соотношением основных незаменимых аминокислот — триптофана, лизина, метионина + цистина — является 1:3:3. При нарушении сбалансированности аминокислотного состава рациона синтез полноценных белков нарушается, что ведет к возникновению в организме патологических изменений.

Аминокислотный состав разных белков неодинаков и является важнейшей характеристикой каждого белка, а также критерием его ценности в питании. Формула сбалансированности незаменимых аминокислот (г/сутки) для взрослого человека следующая: триптофан — 1, лейцин — 4—6, изолейцин — 3—4, валин — 3—4, треонин — 2—3, лизин — 3—5, метионин — 2—4, фенилаланин — 2—4.

host.net.kg

Белок и всё о нём в биологии и химии

Глава 3. Химический состав белков

3.3. Аминокислоты

 

В настоящее время в различных объектах живой природы обнаружено до 200 различных аминокислот. В организме человека их, например, около 60. Однако в состав белков входят только 20 аминокислот, называемых иногда природными.

Аминокислоты — это органические кислоты, у которых атом водорода -углеродного атома замещен на аминогруппу — Nh3. Следовательно, по химической природе это -аминокислоты с общей формулой:

Из этой формулы видно, что в состав всех аминокислот входят следующие общие группировки: — Ch3, — Nh3, — COOH. Боковые же цепи (радикалы — R ) аминокислот различаются. Химическая природа радикалов разнообразна: от атома водорода до циклических соединений. Именно радикалы определяют структурные и функциональные особенности аминокислот.

Все аминокислоты, кроме простейшей аминоуксусной кислоты глицина () имеют хиральный атом и могут существовать в виде двух энантиомеров (оптических изомеров):

В состав всех изученных в настоящее время белков входят только аминокислоты L-ряда, у которых, если рассматривать хиральный атом со стороны атома H, группы Nh4+, COO- и радикал R расположены по часовой стрелке. Необходимость при построении биологически значимой полимерной молекулы строить ее из строго определенного энантиомера очевидна — из рацемической смеси двух энантиомеров получилась бы невообразимо сложная смесь диастереоизомеров. Вопрос, почему жизнь на Земле основана на белках, построенных именно из L-, а не D—аминокислот, до сих пор остается интригующей загадкой. Следует отметить, что D-аминокислоты достаточно широко распространены в живой природе и, более того, входят в состав биологически значимых олигопептидов.

Из двадцати основных -аминокислот строятся белки, однако остальные, достаточно разнообразные аминокислоты образуются из этих 20 аминокислотных остатков уже в составе белковой молекулы. Среди таких превращений следует в первую очередь отметить образование дисульфидных мостиков при окислении двух остатков цистеина в составе уже сформированных пептидных цепей. В результате образуется из двух остатков цистеина остаток диаминодикарбоновой кислоты цистина. При этом возникает сшивка либо внутри одной полипептидной цепи, либо между двумя различными цепями. В качестве небольшого белка, имеющего две полипептидные цепи, соединенный дисульфидными мостиками, а также сшивки внутри одной из полипептидных цепей:

Важным примером модификации аминокислотных остатков является превращение остатков пролина в остатки гидроксипролина:

Это превращение происходит, причем в значительном масштабе, при образовании важного белкового компонента соединительной ткани — коллагена.

Еще одним весьма важным видом модификации белков является фосфорилирование гидроксогрупп остатков серина, треонина и тирозина, например:

Аминокислоты в водном растворе находятся в ионизированном состоянии за счет диссоциации амино- и карбоксильных групп, входящих в состав радикалов. Другими словами, они являются амфотерными соединениями и могут существовать либо как кислоты (доноры протонов), либо как основания (акцепторы доноров).

Все аминокислоты в зависимости от структуры разделены на несколько групп:
Ациклические. Моноаминомонокарбоновые аминокислоты имеют в своем составе одну аминную и одну карбоксильную группы, в водном растворе они нейтральны. Некоторые из них имеют общие структурные особенности, что позволяет рассматривать их вместе:

1. Глицин и аланин. Глицин (гликокол или аминоуксусная кислота) является оптически неактивным — это единственная аминокислота, не имеющая энатиомеров. Глицин участвует в образовании нуклеиновых и желчных кислот, гема, необходим для обезвреживания в печени токсичных продуктов. Аланин используется организмом в различных процессах обмена углеводов и энергии. Его изомер -аланин является составной частью витамина пантотеновой кислоты, коэнзима А (КоА), экстрактивных веществ мышц.

2. Серин и треонин. Они относятся к группе гидрооксикислот, т.к. имеют гидроксильную группу. Серин входит в состав различных ферментов, основного белка молока — казеина, а также в состав многих липопротеинов. Треонин участвует в биосинтезе белка, являясь незаменимой аминокислотой.

3. Цистеин и метионин. Аминокислоты, имеющие в составе атом серы. Значение цистеина определяется наличием в ее составе сульфгидрильной ( — SH) группы, которая придает ему способность легко окисляться и защищать организм о веществ с высокой окислительной способностью (при лучевом поражении, отравлении фосфором). Метионин характеризуется наличием легко подвижной метильной группы, использующейся для синтеза важных соединений в организме (холина, креатина, тимина, адреналина и др.).

4. Валин, лейцин и изолейцин. Представляют собой разветвленные аминокислоты, которые активно участвуют в обмене веществ и не синтезируются в организме.

Моноаминодикарбоновые аминокислоты имеют одну аминную и две карбоксильные группы и в водном растворе дают кислую реакцию. К ним относятся аспарагиновая и глутаминовая кислоты, аспарагин и глутамин. Они входят в состав тормозных медиаторов нервной системы.

Диаминомонокарбоновые аминокислоты в водном растворе имеют щелочную реакцию за счет наличия двух аминных групп. Относящийся к ним лизин необходим для синтеза гистонов а также в ряд ферментов. Аргинин участвует в синтезе мочевины, креатина.

Циклические. Эти аминокислоты имеют в своем составе ароматическое или гетероциклическое ядро и, как правило, не синтезируется в организме человека и должны поступать с пищей. Они активно участвуют в разнообразных обменных процессах. Так фенил-аланин служит основным источником синтеза тирозина — предшественника ряда биологически важных веществ: гормонов (тироксина, адреналина), некоторых пигментов. Триптофан помимо участия в синтезе белка, служит компонентом витамина PP, серотонина, триптамина, ряда пигментов. Гистидин необходим для синтеза белков, является предшественником гистамина, влияющего на кровяное давление и секрецию желудочного сока.

belok-s.narod.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *