Кт по – что это такое, как делают КТ внутренних органов, их виды

Содержание

Компьютерная томография в клинике EMC в Москве - Круглосуточно

Подготовка к КТ

Стандартная процедура КТ (без контраста, без наркоза) не требует от пациента специальной подготовки и длится не более 40 минут. Перед проведением процедуры необходимо снять предметы с металлическими элементами, попадающие в зону сканирования, чтобы избежать снижения качества изображения.

Важно! За 24 часа до исследования и в течение 48 часов после него рекомендуется отменить сахароснижающие препараты, содержащие метформин.

КТ органов брюшной полости, малого таза и забрюшинного пространства

Процедура проводится натощак или не ранее чем через 3-4 часа после последнего приема пищи. Допускается прием лекарств (запить небольшим количеством воды). Непосредственно перед проведением исследования в отделении выпивается около 500-600 мл воды.

КТ органов мочевыделительной системы

За полчаса-час перед исследованием не рекомендуется опорожнять мочевой пузырь.

КТ сердца и коронарных артерий, КТ-ангиография любого сегмента сосудистого русла

Процедура проводится натощак или не ранее чем через 3 часа после последнего приема пищи. В день исследования рекомендуется воздержаться от курения, употребления кофе, чая и энергетических напитков.

КТ-энтерография тонкой кишки

Процедура проводится натощак, не ранее чем за 6 часов после последнего приема пищи. В отделение следует прибыть за час до назначенного времени исследования. В течение часа необходимо будет выпить 2 литра раствора Фортранса (1 пакет на 1 л воды) или раствора маннитола (200 мл на 1,5 л воды) по 150-200 мл каждые 5 минут. Все препараты выдаются в отделении.

КТ толстой кишки (КТ-колонография)

В течение 3-х дней перед исследованием нужно соблюдать бесшлаковую диету. Не рекомендуются бобовые, черный хлеб, молоко, газированные напитки, овощи, фрукты, полуфабрикаты, сладкое. Разрешены гречка, геркулес, чечевица, рис, чай, кисломолочные продукты (если нет непереносимости), нежирное мясо, рыба, овощные супы. За сутки до исследования необходимо принять раствор урографина (60 мл на 1 литр воды) дробно в течение дня с приемами пищи (препарат приобретается пациентом самостоятельно). В день исследования утром разрешается легкий завтрак. Необходимо прибыть в отделение за 30 минут до начала исследования.

Важно! Не забудьте принести все выписки, протоколы или записи (диски) предыдущих исследований. Чем большей информацией обладает врач-рентгенолог перед исследованием, тем яснее поставленная перед ним задача. Кроме того, предыдущие результаты позволят оценить динамику заболевания.

 

Цены на компьютерную томографию с контрастированием можно уточнить в прайс-листе ЕМС (г. Москва). Сделать томографию можно круглосуточно по предварительной записи.

www.emcmos.ru

Компьютерная томография (КТ) | Боткинская больница

1. Что такое КТ?

Компьютерная томография (КТ) – это современный метод диагностики, который позволяет получить точную информацию о состоянии костей, органов и тканей пациента. При проведении КТ выбранная зона тела пациента просвечивается малыми дозами рентгеновских лучей с разных ракурсов, а точнее «послойно». Трубка томографа (или несколько трубок) с большой скоростью вращается вокруг пациента и делает множество снимков. После этого сложная компьютерная программа их обрабатывает. В результате врач получает объемные трехмерные послойные изображения всех органов в высоком разрешении. При необходимости он может их приблизить, увеличить, и таким образом исследовать любую часть изображения, где заметит что-то подозрительное.

В отличие от обычного «рентгена», КТ позволяет точно определить место патологического очага, увидеть плотность новообразований, в том числе опухолей. В результатах КТ-обследования отсутствуют наслоения, как это происходит на рентгеновском снимке. Из-за них врач порой не может увидеть изменения в тканях. Метод компьютерной томографии фактически исключает вероятность того, что какие-то процессы в органах и тканях останутся незамеченными.

2. Когда назначают КТ

Компьютерная томография позволяет диагностировать изменения в органах и тканях, которые невозможно обнаружить с помощью других методов исследования. Ее также часто назначают для уточнения диагноза после рентгеновского обследования или УЗИ. При помощи КТ на ранних стадиях можно выявить различные онкологические и неопухолевые заболевания, сердечно-сосудистые патологии, инфекционные заболевания и др. Во время КТ врач может точно увидеть размер, форму и структуру патологических очагов, оценить их динамику. На томограмме видны камни, кисты, опухоли. На сегодняшний день КТ – практически универсальный метод диагностики, позволяющий врачу увидеть максимально подробную картину состояния организма.

3. Типы компьютерной томографии: мультисрезовая (многослойная, МСКТ) и спиральная КТ

На сегодняшний день наиболее востребованный и современный метод КТ-обследования – мультисрезовая или многослойная КТ, сокращенно МСКТ.

Впервые принцип компьютерной томографии применили в 70-е годы прошлого века. Томограф изначально имел одну лучевую трубку, которая вращалась вокруг пациента и делала снимки с разных ракурсов. Датчики, расположенные по кольцу, фиксировали эти изображения. В процессе обследования стол медленно двигался по горизонтали, и томограф просвечивал следующий слой тела.

С начала 90-х в обиход вошли спиральные томографы. В них лучевая трубка (или их может быть несколько) движется по спирали, что увеличивает точность обследования и одновременно уменьшает зону облучения. На сегодня технологии позволяют делать более 300 срезов за одно включение рентгеновской трубки. Фактически, это уже не статические изображения внутренних органов, а наблюдение за ними в реальном времени. Нахождение пациента внутри мультисрезового компьютерного томографа может занимать менее 1 минуты времени. Обработка результатов, когда больной уже может не присутствовать, займет час-полтора. При этом результаты обследования – более точные, а лучевая нагрузка на организм – минимальна.

4. Записаться на КТ

botkinmoscow.ru

Компьютерная томография (КТ) - польза или вред для человека?

Компьютерная томография (КТ) представляет собой метод послойной диагностики организма человека, базирующийся на использовании свойств рентгеновского излучения.

Навигация по странице:
Определение
Как проводится обследование?
Опасна ли компьютерная томография?
Основные виды КТ
Показания для проведения томографии
Противопоказания

Методы компьютерной диагностики используются с целью обследования самых разных частей тела пациента: головы, брюшной полости, сердца и сосудов, мочевыделительной и половой систем. Современные аппараты позволяют получить высококачественное изображение с высокой степенью разрешения в течение короткого промежутка времени.

Продолжительность диагностики при проведении КТ составляет несколько минут. Этот метод приобретает все большую популярность в современной медицине, так как обладает намного большей диагностической точностью, чем рентгенография, ультразвуковое исследование и другие способы.

Несмотря на высокую диагностическую ценность КТ, проходить указанное обследование следует только по направлению врача, так как некоторые заболевания можно выявить с помощью более простых и доступных методов.

Как проводится обследование?

Компьютерная томография выполняется с использованием специального аппарата — томографа. Если обследование проводится с использованием контраста, то пациент заранее должен выпить определенное количество жидкости по назначению врача.

Перед началом процедуры пациент должен лечь на специальный стол, который впоследствии будет двигаться в сторону рамы томографа. Предварительно пациент должен снять всю одежду, имеющую металлические застежки, пуговицы и другие элементы, способные оказать влияние на работу аппарата. Можно остаться в обычной футболке или сорочке, не содержащей каких-либо деталей из металла.

Отверстие рамы компьютерного томографа является достаточно широким, поэтому у пациента вряд ли начнется приступ клаустрофобии. В процессе обследования пациенту может быть введен внутривенно «контраст» — специальное вещество, содержащее соединения йода. Это необходимо для того, чтобы изображение некоторых исследуемых участков было более качественным и информативным.

Сразу после введения контраста пациент может почувствовать прилив жара, но это кратковременное явление, которое быстро проходит.

Как правило, результаты исследования врач выдает на руки в этот же день. Обычно пациент получает информацию в распечатанном виде, а также на электронном носителе.

Доза облучения, степень опасности КТ

Во время проведения компьютерной томографии пациент подвергается определенной лучевой нагрузке. По этой причине любое подобное обследование должно быть назначено исключительно врачом с учетом возможных противопоказаний (например, беременность).

Тем не менее, доза облучения не является настолько высокой, чтобы это вызывало серьезные опасения по поводу дальнейшего состояния здоровья пациента.

Уровень лучевой нагрузки в значительной степени зависит от того, какой именно орган обследуется. Так, при проведении томографии головы доза облучения составляет 2 мЗв (миллизиверта), шеи — 3 мЗв, легких — 5,2 мЗв, позвоночника — 6 мЗв, брюшной полости или таза — 10 мЗв, всей грудной клетки — 15 мЗв. Таким образом, доза облучения при проведении КТ может варьировать от 2 до 20 мЗв. Это приблизительно столько же, сколько получает человек лучевой нагрузки от естественного радиационного природного фона в течение одного года. В целом доза облучения при проведении компьютерной томографии намного выше, чем, например, при проведении обычного рентгена легких.

Помните о том, что повышенная лучевая нагрузка может быть нежелательной для детей и подростков и довольно опасна для беременных женщин!

Основные виды компьютерной томографии (КТ)

Рентгеновская компьютерная томография представляет собой метод диагностического обследования, который позволяет получить детальную информацию о состоянии внутренних органов человека. Основным инструментом проведения исследования является компьютерный томограф. При проведении томографии специальная рентгеновская установка вращается вокруг тела исследуемого человека и производит снимки под различными углами, которые затем обрабатываются компьютером.

Рентгеновская компьютерная томография выполняется при необходимости установления причин головной боли, уточнения диагноза при травмах головы или инсультах, в качестве диагностики при определении причин возникновения других заболеваний.

Многослойная (мультиспиральная) компьютерная томография (МСКТ) — это высокоточный и достоверный метод диагностики, основанный на использовании свойств рентгеновского излучения и выполняемый с целью выявления признаков заболеваний на ранней стадии. Мультиспиральные томографы отличаются от других подобных устройств наличием не одного, а нескольких сверхчувствительных детекторов, которые регистрируют рентгеновский пучок, прошедший через определенный участок тела пациента, и после обработки данных выводят полученное изображение на экран компьютерного монитора. Мультиспиральная томография позволяет выявить и дифференцировать доброкачественные и злокачественные образования внутренних органов человека, определить степень и особенности дегенеративных изменений позвоночника, диагностировать любые повреждения костей, определить степень поражения артерий при нарушениях кровообращения.

Мультиспиральная (64-спиральная) компьютерная томография (МКТ) представляет собой особый вид диагностического обследования, характеризующийся малым временем экспозиции (облучения) и позволяющий проводить диагностику с высокой скоростью. При этом используется меньший объем контрастного вещества, что улучшает качество обследования и снижает уровень дискомфорта для пациента.

МКТ идеально подходит для диагностического обследования сердца и сосудов. Также этот вид исследования идеально подходит для детей, так как проводится очень быстро, поэтому ребенок испытывает минимум неудобств.

Однофотонная эмиссионная компьютерная томография (ОФЭКТ) является разновидностью эмиссионной томографии. Метод основан на создании изображений распределения радионуклидов. При диагностике используются радиофармпрепараты, помеченные радиоизотопами. ОФЭКТ предоставляет возможность получить трехмерные изображения обследуемых органов. Также метод позволяет выявить объем функционирующей ткани какого-либо органа, что очень важно при проведении диагностики. Технология ОФЭКТ успешно применяется в кардиологии, неврологии, урологии, онкологии, при исследованиях головного мозга, скелета, заболеваний печени и других органов.

Компьютерная томографическая ангиография (КТ-ангиография), или компьютерная томография с контрастированием представляет собой метод исследования, сочетающий возможности современной компьютерной томографии и традиционной ангиографии.

В отличие от классической ангиографии, при проведении которой осуществляется определенное инвазивное вмешательство в организм человека, КТ-ангиография является намного более безопасным и удобным для пациента методом.

Внутривенное введение контраста — намного безвреднее и безболезненнее, чем артериальное контрастирование, выполняемое при обычной ангиографии. Метод широко используется для диагностики заболеваний сердца и сосудов, а также обследования органов брюшной полости, мочевыделительной системы и в некоторых других случаях.

До и после проведения исследования от пациента не требуется проведения какой-либо специальной подготовки, за исключением необходимости выпить определенное количество воды непосредственно перед процедурой. Контрастное вещество, введенное в организм внутривенно, полностью выводится из организма в течение нескольких часов. Метод является безвредным для человека, за исключением отдельных случаев аллергической реакции на контраст.

Показания для проведения томографии

Спектр показаний к проведению компьютерной томографии является достаточно обширным.

Этот метод применяется в следующих случаях:

  • для выявления заболеваний и нарушений в работе головного мозга, в том числе определения последствий инсультов;
  • для диагностики заболеваний сердца и сосудов;
  • при травмах головы и появлении головной боли, причина которой не установлена;
  • для обследования легких;
  • для диагностики заболеваний пищеварительной, мочевыделительной, половой систем;
  • с целью исследования повреждений и нарушений позвоночного столба и костной ткани;
  • в онкологии;
  • для диагностики заболеваний печени;
  • при обследовании молочной железы.

Обследование с использованием возможностей компьютерной томографии должно проводиться только по назначению врача. Во многих случаях в этом нет необходимости, так как диагностировать многие заболевания можно с помощью более простых методов.

Противопоказания к КТ

Как и любой другой метод, компьютерная томография имеет ряд противопоказаний к проведению. Этот проведения указанного обследования следует воздержаться в следующих случаях:

  1. если масса тела пациента превышает 150 кг;
  2. при наличии психических отклонений у больного, в частности — при клаустрофобии;
  3. при беременности;
  4. при непереносимости препаратов йода (в этом случае обследование проводится без контраста).

При обследовании детей следует взвешенно подходить к назначению этого метода, так как при КТ организм подвергается определенной лучевой нагрузке. По этой же причине не следует многократно проходить обследование даже взрослым людям, чтобы не превысить предельно допустимую дозу облучения в течение короткого промежутка времени.

Благодаря использованию современной компьютерной томографии значительно упрощается постановка диагноза, поэтому повышается качество лечения. При выборе того или иного вида обследования следует учитывать специфику конкретного исследования и задачи, которые требуется решить с использованием данного метода диагностики. Так как пациент вряд ли сможет оценить преимущества того или иного метода, выбор диагностических мероприятий целесообразно доверить лечащему врачу.

otomografii.ru

Компьютерная томография — Википедия. Что такое Компьютерная томография

Компьютерный томограф

Компью́терная томогра́фия — метод неразрушающего послойного исследования внутреннего строения предмета, был предложен в 1972 году Годфри Хаунсфилдом и Алланом Кормаком, удостоенными за эту разработку Нобелевской премии. Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями. В настоящее время рентгеновская компьютерная томография является основным томографическим методом исследования внутренних органов человека с использованием рентгеновского излучения.

Появление компьютерных томографов

Первые математические алгоритмы для КТ были разработаны в 1917 году австрийским математиком И. Радоном (см. преобразование Радона). Физической основой метода является экспоненциальный закон ослабления излучения, который справедлив для чисто поглощающих сред. В рентгеновском диапазоне излучения экспоненциальный закон выполняется с высокой степенью точности, поэтому разработанные математические алгоритмы были впервые применены именно для рентгеновской компьютерной томографии.

В 1963 году американский физик А. Кормак повторно (но отличным от Радона способом) решил задачу томографического восстановления, а в 1969 году английский инженер-физик Г. Хаунсфилд из фирмы «EMI Ltd.» сконструировал «ЭМИ-сканер» — первый компьютерный рентгеновский томограф, клинические испытания которого прошли в 1971 году, — разработанный только для сканирования головы. Средства на разработку КТ были выделены фирмой EMI, в частности, благодаря высоким доходам, полученным от контракта с группой The Beatles[1].

В 1979 году «за разработку компьютерной томографии» Кормак и Хаунсфилд были удостоены Нобелевской премии по физиологии и медицине.

Предпосылки метода в истории медицины

Изображения, полученные методом рентгеновской компьютерной томографии, имеют свои аналоги в истории изучения анатомии. В частности, Николай Иванович Пирогов разработал новый метод изучения взаиморасположения органов оперирующими хирургами, получивший название топографической анатомии. Сутью метода было изучение замороженных трупов, послойно разрезанных в различных анатомических плоскостях («анатомическая томография»). Пироговым был издан атлас под названием «Топографическая анатомия, иллюстрированная разрезами, проведёнными через замороженное тело человека в трёх направлениях». Фактически, изображения в атласе предвосхищали появление подобных изображений, полученных лучевыми томографическими методами исследования. Разумеется, современные способы получения послойных изображений имеют несравнимые преимущества: нетравматичность, позволяющая проводить прижизненную диагностику заболеваний; возможность аппаратного представления в различных анатомических плоскостях (проекциях) однократно полученных «сырых» КТ-данных, а также трёхмерной реконструкции; возможность не только оценивать размеры и взаиморасположение органов, но и детально изучать их структурные особенности и даже некоторые физиологические характеристики, основываясь на показателях рентгеновской плотности и их изменении при внутривенном контрастном усилении.

В нейрохирургии до внедрения компьютерной томографии применялись предложенные в 1918—1919 годах Уолтером Денди вентрикуло- и пневмоэнцефалография. Пневмоэнцефалография впервые позволила нейрохирургам проводить визуализацию внутричерепных новообразований с помощью рентгеновских лучей. Они проводились путём введения воздуха либо непосредственно в желудочковую систему мозга (вентрикулография) либо через поясничный прокол в субарахноидальное пространство (пневмоэнцефалография). Проведение вентрикулографии, предложенное Денди в 1918 году, имело свои ограничения, так как требовало наложения с диагностической целью фрезевого отверстия и вентрикулопункции. Пневмоэнцефалография, описанная в 1919 году, была менее инвазивным методом и широко использовалась для диагностики внутричерепных образований. Однако, как вентрикуло-, так и пневмоэнцефалография представляли из себя инвазивные методы диагностики, которые сопровождались появлением у больных интенсивных головных болей, рвоты, несли целый ряд рисков. Поэтому с внедрением компьютерной томографии они перестали применяться в клинической практике. Эти методы были заменены более безопасными КТ-вентрикулографией и КТ-цистернографией, применяемыми значительно реже, по строгим показаниям[2], наряду с широко используемой бесконтрастной компьютерной томографией головного мозга.

Шкала Хаунсфилда

Для визуальной и количественной оценки плотности визуализируемых методом компьютерной томографии структур используется шкала ослабления рентгеновского излучения, получившая название шкалы Хаунсфилда (её визуальным отражением на мониторе аппарата является чёрно-белый спектр изображения). Диапазон единиц шкалы («денситометрических показателей, англ. Hounsfield units»), соответствующих степени ослабления рентгеновского излучения анатомическими структурами организма, составляет от −1024 до +3071, то есть 4096 чисел ослабления. Средний показатель в шкале Хаунсфилда (0 HU) соответствует плотности воды, отрицательные величины шкалы соответствуют воздуху и жировой ткани, положительные — мягким тканям, костной ткани и более плотному веществу (металл). В практическом применении измеренные показатели ослабления могут несколько отличаться на разных аппаратах.

Следует отметить, что «рентгеновская плотность» — усредненное значение поглощения тканью излучения; при оценке сложной анатомо-гистологической структуры измерение её «рентгеновской плотности» не всегда позволяет с точностью утверждать, какая ткань визуализируется (например, насыщенные жиром мягкие ткани имеют плотность, соответствующую плотности воды).

Изменение окна изображения

Обычный компьютерный монитор способен отображать до 256 оттенков серого цвета, некоторые специализированные медицинские аппараты способны показывать до 1024 оттенков. В связи со значительной шириной шкалы Хаунсфилда и неспособностью существующих мониторов отразить весь её диапазон в черно-белом спектре, используется программный перерасчет серого градиента в зависимости от интересуемого интервала шкалы. Черно-белый спектр изображения можно применять как в широком диапазоне («окне») денситометрических показателей (визуализируются структуры всех плотностей, однако невозможно различить структуры, близкие по плотности), так и в более-менее узком с заданным уровнем его центра и ширины («легочное окно», «мягкотканное окно» и т. д.; в этом случае теряется информация о структурах, плотность которых выходит за пределы диапазона, однако хорошо различимы структуры, близкие по плотности). Проще говоря, изменение центра окна и его ширины можно сравнить с изменением яркости и контрастности изображения соответственно.

Средние денситометрические показатели

КТ-снимок грудной клетки в легочном и мягкотканном окнах (на изображениях указаны параметры центра и ширины окна)
Вещество HU
Воздух −1000
Жир −120
Вода 1
Мягкие ткани +40
Кости +400 и выше

Развитие современного компьютерного томографа

Современный компьютерный томограф фирмы Siemens Medical Solutions

Современный компьютерный томограф представляет собой сложный программно-технический комплекс. Механические узлы и детали выполнены с высочайшей точностью. Для регистрации прошедшего через среду рентгеновского излучения используются сверхчувствительные детекторы. Конструкция и материалы, применяемые при их изготовлении, постоянно совершенствуются. При изготовлении компьютерного томографа предъявляются самые жесткие требования к рентгеновским излучателям. Неотъемлемой частью аппарата является обширный пакет программного обеспечения, позволяющий проводить весь спектр компьютерно-томографических исследований (КТ-исследований) с оптимальными параметрами, проводить последующую обработку и анализ КТ-изображений. Как правило, стандартный пакет программного обеспечения может быть значительно расширен с помощью узкоспециализированных программ, учитывающих особенности сферы применения каждого конкретного аппарата.

С математической точки зрения построение изображения сводится к решению системы линейных уравнений. Так, например, для получения томограммы размером 200×200 пикселей система включает 40 000 уравнений. Для решения подобных систем разработаны специализированные методы, ориентированные на параллельных вычислениях.

Поколения компьютерных томографов: от первого до четвёртого

Прогресс КТ-томографов напрямую связан с увеличением количества детекторов, то есть с увеличением числа одновременно собираемых проекций.

Аппарат 1-го поколения появился в 1973 году. КТ-аппараты первого поколения были пошаговыми. Была одна трубка, направленная на один детектор. Сканирование производилось шаг за шагом, делая по одному обороту на слой. Каждый слой обрабатывался около 4 минут.

Во 2-м поколении КТ-аппаратов использовался веерный тип конструкции. На кольце вращения напротив рентгеновской трубки устанавливалось несколько детекторов. Время обработки изображения составило 20 секунд.

3-е поколение компьютерных томографов ввело понятие спиральной компьютерной томографии. Трубка и детекторы за один шаг стола синхронно осуществляли полное вращение по часовой стрелке, что значительно уменьшило время исследования. Увеличилось и количество детекторов. Время обработки и реконструкций заметно уменьшилось.

4-е поколение имеет 1088 люминесцентных датчиков, расположенных по всему кольцу гентри. Вращается лишь рентгеновская трубка. Благодаря этому методу время вращения сократилось до 0,7 секунд. Но существенного отличия в качестве изображений с КТ-аппаратами 3-го поколения не имеет.

Спиральная компьютерная томография

Спиральная КТ используется в клинической практике с 1988 года, когда компания Siemens Medical Solutions представила первый спиральный компьютерный томограф. Спиральное сканирование заключается в одновременном выполнении двух действий: непрерывного вращения источника — рентгеновской трубки, генерирующей излучение, вокруг тела пациента, и непрерывного поступательного движения стола с пациентом вдоль продольной оси сканирования z через апертуру гентри. В этом случае траектория движения рентгеновской трубки относительно оси z — направления движения стола с телом пациента, примет форму спирали.

В отличие от последовательной КТ скорость движения стола с телом пациента может принимать произвольные значения, определяемые целями исследования. Чем выше скорость движения стола, тем больше протяженность области сканирования. Важно то, что длина пути стола за один оборот рентгеновской трубки может быть в 1,5—2 раза больше толщины томографического слоя без ухудшения пространственного разрешения изображения.

Технология спирального сканирования позволила значительно сократить время, затрачиваемое на КТ-исследование и существенно уменьшить лучевую нагрузку на пациента.

Многослойная компьютерная томография (МСКТ)

Многослойная компьютерная томография с внутривенным контрастным усилением и трёхмерной реконструкцией изображения.

Многослойная («мультиспиральная», «мультисрезовая» компьютерная томография — МСКТ) была впервые представлена компанией Elscint Co. в 1992 году. Принципиальное отличие МСКТ от спиральных томографов предыдущих поколений в том, что по окружности гентри расположены не один, а два и более ряда детекторов. Для того, чтобы рентгеновское излучение могло одновременно приниматься детекторами, расположенными на разных рядах, была разработана новая — объёмная геометрическая форма пучка.

В 1992 году появились первые двухсрезовые (двухспиральные) МСКТ с двумя рядами детекторов, а в 1998 году — четырёхсрезовые (четырёхспиральные), с четырьмя рядами детекторов соответственно. Кроме вышеотмеченных особенностей, было увеличено количество оборотов рентгеновской трубки с одного до двух в секунду. Таким образом, четырёхспиральные МСКТ пятого поколения на сегодняшний день в восемь раз быстрее, чем обычные спиральные КТ четвёртого поколения. В 2004—2005 годах были представлены 32-, 64- и 128-срезовые МСКТ, в том числе — с двумя рентгеновскими трубками. В 2007 году Toshiba вывела на рынок 320-срезовые компьютерные томографы, в 2013 году — 512- и 640-срезовые. Они позволяют не только получать изображения, но и дают возможность практически в «реальном» времени наблюдать физиологические процессы, происходящие в головном мозге и в сердце[источник не указан 1093 дня].

Особенностью подобной системы является возможность сканирования целого органа (сердце, суставы, головной мозг и т. д.) за один оборот рентгеновской трубки, что значительно сокращает время обследования, а также возможность сканировать сердце даже у пациентов, страдающих аритмиями.

Преимущества МСКТ перед обычной спиральной КТ
  • улучшение временного разрешения
  • улучшение пространственного разрешения вдоль продольной оси z
  • увеличение скорости сканирования
  • улучшение контрастного разрешения
  • увеличение отношения сигнал/шум
  • эффективное использование рентгеновской трубки
  • большая зона анатомического покрытия
  • уменьшение лучевой нагрузки на пациента

Все эти факторы значительно повышают скорость и информативность исследований.

Основным недостатком метода остается высокая лучевая нагрузка на пациента, несмотря на то, что за время существования КТ её удалось значительно снизить.

  • Улучшение временного разрешения достигается за счёт уменьшения времени исследования и количества артефактов из-за непроизвольного движения внутренних органов и пульсации крупных сосудов.
  • Улучшение пространственного разрешения вдоль продольной оси z, связано с использованием тонких (1—1,5 мм) срезов и очень тонких, субмиллиметровых (0,5 мм) срезов. Чтобы реализовать эту возможность, разработаны два типа расположения массива детекторов в МСКТ:
    • матричные детекторы (matrix detectors), имеющие одинаковую ширину вдоль продольной оси z;
    • адаптивные детекторы (adaptive detectors), имеющие неодинаковую ширину вдоль продольной оси z.

Преимущество матричного массива детекторов заключается в том, что количество детекторов в ряду можно легко увеличить для получения большего количества срезов за один оборот рентгеновской трубки. Так как в адаптивном массиве детекторов меньше количество самих элементов, то меньше и число зазоров между ними, что дает снижение лучевой нагрузки на пациента и уменьшение электронного шума. Поэтому три из четырёх мировых производителей МСКТ выбрали именно этот тип.

Все вышеотмеченные нововведения не только повышают пространственное разрешение, но благодаря специально разработанным алгоритмам реконструкции позволяют значительно уменьшить количество и размеры артефактов (посторонних элементов) КТ-изображений.

Основным преимуществом МСКТ по сравнению с односрезовой СКТ является возможность получения изотропного изображения при сканировании с субмиллиметровой толщиной среза (0,5 мм). Изотропное изображение возможно получить, если грани вокселя матрицы изображения равны, то есть воксель принимает форму куба. В этом случае пространственные разрешения в поперечной плоскости x—y и вдоль продольной оси z становятся одинаковыми.

  • Увеличение скорости сканирования достигается уменьшением времени оборота рентгеновской трубки, по сравнению с обычной спиральной КТ, в два раза — до 0,45—0,5 с.
  • Улучшение контрастного разрешения достигается вследствие увеличения дозы и скорости введения контрастных средств при проведении ангиографии или стандартных КТ-исследований, требующих контрастного усиления. Различие между артериальной и венозной фазой введения контрастного средства прослеживается более чётко.
  • Увеличение отношения сигнал/шум достигнуто благодаря конструктивным особенностям исполнения новых детекторов и используемых при этом материалов; улучшению качества исполнения электронных компонентов и плат; увеличению тока накала рентгеновской трубки до 400 мА при стандартных исследованиях или исследованиях тучных пациентов.
  • Эффективное использование рентгеновской трубки достигается за счёт меньшего времени работы трубки при стандартном исследовании. Конструкция рентгеновских трубок претерпела изменения для обеспечения лучшей устойчивости при больших центробежных силах, возникающих при вращении за время, равное или менее 0,5 с. Используются генераторы большей мощности (до 100 кВт). Конструктивные особенности исполнения рентгеновских трубок, лучшее охлаждение анода и повышение его теплоёмкости до 8 млн единиц также позволяют продлить срок службы трубок.
  • Зона анатомического покрытия увеличена благодаря одновременной реконструкции нескольких срезов полученных за время одного оборота рентгеновской трубки. Для МСКТ-установки зона анатомического покрытия зависит от количества каналов данных, шага спирали, толщины томографического слоя, времени сканирования и времени вращения рентгеновской трубки. Зона анатомического покрытия может быть в несколько раз больше за одно и то же время сканирования по сравнению с обычным спиральным компьютерным томографом.
  • Лучевая нагрузка при многослойном спиральном КТ-исследовании при сопоставимых объёмах диагностической информации меньше на 30 % по сравнению с обычным спиральным КТ-исследованием. Для этого улучшают фильтрацию спектра рентгеновского излучения и производят оптимизацию массива детекторов. Разработаны алгоритмы, позволяющие в реальном масштабе времени автоматически уменьшать ток и напряжение на рентгеновской трубке в зависимости от исследуемого органа, размеров и возраста каждого пациента.

Компьютерная томография с двумя источниками излучения

В 2005 году компанией «Siemens Medical Solutions» представлен первый аппарат с двумя источниками рентгеновского излучения (Dual Source Computed Tomography). Теоретические предпосылки к его созданию были ещё в 1979 году, но технически его реализация в тот момент была невозможна.

По сути он является одним из логичных продолжений технологии МСКТ. Дело в том, что при исследовании сердца (КТ-коронарография) необходимо получение изображений объектов, находящихся в постоянном и быстром движении, что требует очень короткого периода сканирования. В МСКТ это достигалось синхронизацией ЭКГ и обычного исследования при быстром вращении трубки. Но минимальный промежуток времени, требуемый для регистрации относительно неподвижного среза для МСКТ при времени обращения трубки, равном 0,33 с (≈3 оборота в секунду), равен 173 мс, то есть времени полуоборота трубки. Такое временное разрешение вполне достаточно для нормальной частоты сердечных сокращений (в исследованиях показана эффективность при частотах менее 65 ударов в минуту и около 80, с промежутком малой эффективности между этими показателями и при больших значениях). Некоторое время пытались увеличить скорость вращения трубки в гентри томографа. В настоящее время достигнут предел технических возможностей для её увеличения, так как при обороте трубки в 0,33 с её вес возрастает в 28 раз (перегрузки 28 g). Чтобы получить временное разрешение менее 100 мс, требуется преодоление перегрузок более чем 75 g.

Использование же двух рентгеновских трубок, расположенных под углом 90°, дает временное разрешение, равное четверти периода обращения трубки (83 мс при обороте за 0,33 с). Это позволило получать изображения сердца независимо от частоты сокращений.

Также такой аппарат имеет ещё одно значительное преимущество: каждая трубка может работать в своем режиме (при различных значениях напряжения и тока, кВ и мА соответственно). Это позволяет лучше дифференцировать на изображении близкорасположенные объекты различных плотностей. Особенно это важно при контрастировании сосудов и образований, находящихся близко от костей или металлоконструкций. Данный эффект основан на различном поглощении излучения при изменении его параметров у смеси крови и йодосодержащего контрастного вещества при неизменности этого параметра у гидроксиапатита (основа кости) или металлов.

В остальном аппараты являются обычными МСКТ-аппаратами и обладают всеми их преимуществами.

Массовое внедрение новых технологий и компьютерных вычислений позволили внедрить в практику такие методы, как виртуальная эндоскопия, в основе которых лежит РКТ и МРТ.

Контрастное усиление

Для улучшения дифференцировки органов друг от друга, а также нормальных и патологических структур, используются различные методики контрастного усиления (чаще всего, с применением йодсодержащих контрастных препаратов).

Двумя основными разновидностями введения контрастного препарата являются пероральное (пациент с определённым режимом выпивает раствор препарата) и внутривенное (производится медицинским персоналом). Главной целью первого метода является контрастирование полых органов желудочно-кишечного тракта; второй метод позволяет оценить характер накопления контрастного препарата тканями и органами через кровеносную систему. Методики внутривенного контрастного усиления во многих случаях позволяют уточнить характер выявленных патологических изменений (в том числе достаточно точно указать наличие опухолей, вплоть до предположения их гистологической структуры) на фоне окружающих их мягких тканей, а также визуализировать изменения, не выявляемые при обычном («нативном») исследовании.

В свою очередь, внутривенное контрастирование можно проводить двумя способами: «ручное» внутривенное контрастирование и болюсное контрастирование.

При первом способе контраст вводится вручную рентгенлаборантом или процедурной медсестрой, время и скорость введения не регулируются, исследование начинается после введения контрастного вещества. Этот способ применяется на «медленных» аппаратах первых поколений, при МСКТ «ручное» введение контрастного препарата уже не соответствует значительно возросшим возможностям метода.

При болюсном контрастном усилении контрастный препарат вводится внутривенно шприцем-инжектором с установленными скоростью и временем подачи вещества. Цель болюсного контрастного усиления — разграничение фаз контрастирования. Время сканирования различается на разных аппаратах, при разных скоростях введения контрастного препарата и у разных пациентов; в среднем при скорости введения препарата 4—5 мл/сек сканирование начинается примерно через 20—30 секунд после начала введения инжектором контраста, при этом визуализируется наполнение артерий (артериальная фаза контрастирования). Через 40—60 секунд аппарат повторно сканирует эту же зону для выделения портально-венозной фазы, в которую визуализируется контрастирование вен. Также выделяют отсроченную фазу (180 секунд после начала введения), при которой наблюдается выведение контрастного препарата через мочевыделительную систему.

КТ-ангиография

КТ-ангиография позволяет получить послойную серию изображений кровеносных сосудов; на основе полученных данных посредством компьютерной постобработки с 3D-реконструкцией строится трёхмерная модель кровеносной системы.

Спиральная КТ-ангиография — одно из последних достижений рентгеновской компьютерной томографии. Исследование проводится в амбулаторных условиях. В локтевую вену вводится йодсодержащий контрастный препарат в объёме около 100 мл. В момент введения контрастного вещества делают серию сканирований исследуемого участка.

КТ-перфузия

Метод, позволяющий оценить прохождение крови через ткани организма, в частности:

  • перфузию головного мозга
  • перфузию печени

Показания к компьютерной томографии

Компьютерная томография широко используется в медицине для нескольких целей:

  1. Как скрининговый тест — при следующих состояниях:
    • Головная боль (за исключением сопутствующих факторов, требующих проведения экстренной КТ)
    • Травма головы, не сопровождающаяся потерей сознания (за исключением сопутствующих факторов, требующих проведения экстренной КТ)
    • Обморок
    • Исключение рака легких.
    В случае использования компьютерной томографии для скрининга, исследование делается в плановом порядке.
  2. Для диагностики по экстренным показаниям — экстренная компьютерная томография
    • Экстренная КТ головного мозга — наиболее часто проводимая экстренная КТ, являющаяся методом выбора при следующих состояниях[3]:
      • Впервые развившийся судорожный синдром
      • Судорожный синдром с судорожным расстройством в анамнезе, в сочетании с хотя бы одним из перечисленного:
      • Травма головы, сопровождающаяся хотя бы одним из перечисленного:
      • Головная боль в сочетании с хотя бы одним из перечисленного:
        • острым, внезапным началом
        • очаговым неврологическим дефицитом
        • стойкими изменениями психического статуса
        • когнитивными нарушениями
        • предполагаемой или доказанной ВИЧ-инфекцией
        • возрастом старше 50 лет и изменением характера головной боли
      • Нарушение психического статуса в сочетании с хотя бы одним из перечисленного:
    • Подозрение на повреждение сосуда (например, расслаивающая аневризма аорты)
    • Подозрение на некоторые другие «острые» поражения полых и паренхиматозных органов (осложнения как основного заболевания, так и в результате проводимого лечения) — по клиническим показаниям, при недостаточной информативности нерадиационных методов.
  3. Компьютерная томография для плановой диагностики
    • Большинство КТ-исследований делается в плановом порядке, по направлению врача, для окончательного подтверждения диагноза. Как правило, перед проведением компьютерной томографии делаются более простые исследования — рентген, УЗИ, анализы и т. д.
  4. Для контроля результатов лечения
  5. Для проведения лечебных и диагностических манипуляций, например пункции под контролем компьютерной томографии и др.
    • Преоперативные изображения, полученные с помощью компьютерной томографии, используются в гибридных операционных во время хирургических операций.

При назначении КТ-исследования, как при назначении любых рентгенологических исследований, необходимо учитывать следующие аспекты[4]:

  • приоритетное использование альтернативных (нерадиационных) методов;
  • проведение рентгенодиагностических исследований только по клиническим показаниям;
  • выбор наиболее щадящих методов рентгенологических исследований;
  • риск отказа от рентгенологического исследования должен заведомо превышать риск от облучения при его проведении.

Окончательное решение о целесообразности, объёме и виде исследования принимает врач-рентгенолог[5].

Некоторые абсолютные и относительные противопоказания

Без контраста:

  • Беременность
  • Масса тела слишком велика для прибора

С контрастом:

Также проведение компьютерной томографии увеличивает частоту возникновения повреждений в ДНК. При проведении компьютерной томографии доза излучения оказалась в 150 раз выше, чем при однократном рентгенологическом исследовании грудной клетки[6].

См. также

Примечания

Литература

  • Cormack A. M. Early two-dimensional reconstruction and recent topics stemming from it // Nobel Lectures in Physiology or Medicine 1971—1980. — World Scientific Publishing Co., 1992. — P. 551—563
  • Hounsfield G. N. Computed Medical Imaging // Nobel Lectures in Physiology or Medicine 1971—1980. — World Scientific Publishing Co., 1992. — P. 568—586
  • Вайнберг Э. И., Клюев В. В., Курозаев В. П. Промышленная рентгеновская вычислительная томография // Приборы для неразрушающего контроля материалов и изделий: Справочник / под ред. В. В. Клюева. — 2-е изд. — M., 1986. — Т. 1.

wiki.sc

Рентгеновская компьютерная томография в онкологии

В течение 70 лет после открытия Рентгена медицинская радиология развивалась в основном по пути модернизации рентгеновского оборудования, усиливающих экранов, фотоматериалов, усилителей изображения и телевизионных систем.

Вместе с тем неизмененным оставался сам принцип получения диагностического изображения — генерация рентгеновского пучка и фиксация его изменений после прохождения через пациента на экране монитора, пленке или селеновой пластине.

Изобретение Г. Хаунсфилдом [G. Hounsfield] в начале семидесятых годов рентгеновской компьютерной томографии (РКТ) было воспринято многими как самый крупный шаг вперед в радиологии с момента открытия рентгеновских лучей. Г. Хаунсфилду вместе с А. Кормаком [A. Cormack] за это достижение в 1979 г. была присуждена Нобелевская премия.

Первые РКТ-аппараты были спроектированы только для обследования головы, однако вскоре появились и сканеры для всего тела. В настоящее время РКТ можно использовать для визуализации любой части тела.

Физические принципы и методология рентгеновской компьютерной томографии

Все методики визуализации с использованием рентгеновских лучей используют проекционные технологии (излучение проецируется на пленку после прохождения через массив тканей) и основываются на факте, что разные ткани ослабляют рентгеновские лучи в различной степени. Однако рентгеновская пленка не может четко отобразить различия и структурные детали тканей из-за их частичного перекрытия.

При традиционной томографии рентгеновская трубка и кассета с рентгеновской пленкой во время исследования перемещаются вместе таким образом, что проекция всех точек в интересующей плоскости остаются на пленке неподвижными. Поэтому точка 1, расположенная в данной плоскости, визуализируется четко, точка 2 находится вне этой плоскости и на изображении расплывается из-за нерезкости, вызванном перемещениями (рис. 8.3).


Рис. 8.3. Принципы получения изображения при традиционной томографии (объяснения в тексте).

Таким образом, традиционная томография может улучшить воспроизведение, но из-за уменьшения контрастного разрешения содержит «размытую» информацию от накладывающихся структур.

При РКТ воздействию рентгеновским лучам подвергаются только тонкие срезы ткани. Отсутствует мешающее наложение или размывание структур, расположенных вне выбранных срезов, то есть задача выделения слоя решается несравненно более эффективно, чем при обычной томографии. Последняя, однако, имеет и преимущества перед РКТ: обычные томограммы можно выполнять в сагитальной, фронтальной и промежуточных плоскостях, что недостижимо при стандартной рентгеновской компьютерной томографии.

В большинстве томографов используется сканирующий модуль (гентри), включающий базовую систему: рентгеновская трубка-детектор, вращательный двигатель и коллиматор. Трубка испускает узкий (колпимированный) пучок рентгеновских лучей, перпендикулярный длинной оси тела и охватывающий весь его диаметр, чем обеспечивается изображение в аксиальной (поперечной) плоскости, недоступной в рентгенодиагностике (рис 8.4).


Рис. 8.4. Принципы получения изображения при компьютерной томографии [Шотемор, 2001]. Показано четыре положения рентгеновской трубки (РТ) в процессе ее вращения вокруг исследуемого объекта (затенен). Из каждого положения можно получить новую проекцию аксиального слоя тела. На основе сотен таких проекций компьютер воссоздает изображение слоя. Выделение слоя достигается узким коллимированием (ограничением) пучка рентгеновского излучения.

Регулировкой коллимации можно менять ширину лучей (от 1 до 10 мм) и, соответственно, варьировать и толщину исследуемого среза ткани. Пропускаемый через пациента пучок рентгеновских лучей фиксируется не пленкой, а системой специальных детекторов в нескольких проекциях плоскости среза РКТ-детекторы примерно в 100 раз чувствительнее рентгеновской пленки при определении различий в интенсивности излучения.

В качестве детекторов используются либо кристаллы различных химических соединении (например, йодид натрия), либо полые камеры, наполненные сжатым ксеноном. Рентгеновские фотоны генерируют в детекторах электрические сигналы. Чем сильнее интенсивность достигшего детектора первичного луча, тем сильнее электрический сигнал. Последние вводятся в компьютер, где с помощью специальных программ реконструируется изображение данного слоя и результат сканирования выводится на монитор.

В течение относительно короткого периода существования метода РКТ в процессе технического совершенствования созданы разные типы томографов, которые принято называть «поколениями». Они различаются характеристиками источника рентгеновского излучения, числом, расположением и методикой взаимных перемещений сканера и детекторов.

Если томографы первого поколения содержали один источник и один детектор рентгеновского излучения, то в томографах пятого поколения обычно используется около 700 детекторов. Большое число детекторов (более 500) обеспечивает чрезвычайно быстрое получение информации, позволяя на некоторых моделях проводить исследования в реальном масштабе времени.

Реконструкция изображения осуществляется компьютером на основании оценки интенсивности рентгеновского излучения, регистрируемого каждым детектором в процессе сканирования. При этом возможно судить о степени поглощения (ослабления) лучей тканями, через которые проходит рентгеновский пучок.

Поскольку биологические ткани в зависимости от плотности и атомной массы в разной степени поглощают излучение, для каждой из них в норме и патологии присваивается числовое значение: число ослабления, или КТ-число. Значение его устанавливается по условной линейной шкале с диапазоном примерно от -1000 до +3000 (рис 8.5).


Рис. 8.5. Шкала единиц Хаунсфилда. Показано примерное расположение на шкале различных веществ (под «тканью» подразумеваются мягкие ткани с наименьшим содержанием жира и паренхиматозные органы). Контрольные точки -1000 HU — воздух, 0 HU — вода.

Единицу измерения КТ-ослабления называют единицей Хаунсфилда (HU). Томограф калибруется таким образом, чтобы значение ослабления воды равнялось 0, а воздуха — -1000 HU. Исходя из этого, для каждого органа выработан средний показатель HU.

Так, для костей он составляет от +200 до +1000 ед. HU, печени — от +40 до +75, почек — от +25 до +50, поджелудочной железы — от +10 до +50, селезенки — от +35 до +75, матки и предстательной железы — от + 35 до +70, крови — от +25 до +60. Ткани, обладающие меньшей чем у воды плотностью, характеризуются отрицательными значениями: жир от -50 до -150 ед. HU, легкие — от -100 до -1000.

Рентгеновская компьютерная томография позволяет дифференцировать отдельные органы и ткани по плотности в пределах до 0,2%. Минимальная величина патологического очага, определяемого с помощью РКТ, составляет 5-10 мм при условии, что КТ-число пораженной ткани отличается от такового здоровой на 10-15 ед. HU.

Необходимо отметить, однако, что точность измерений сильно страдает от несоответствий, вызываемых артефактами Поэтому для дифференциально-диагностических целей единицы HU следует использовать с осторожностью.

Хотя КТ-томограммы имеют значительно более высокое разрешение по контрастности по сравнению с традиционной рентгенографией, их пространственное разрешение ниже

Обычно толщина среза составляет 5-10 мм, но может равняться и 1 мм. Тонкие срезы хороши по пространственному разрешению, но для сохранения качества изображения они требуют более высокой дозы излучения.

Такие тонкие срезы непрактичны при исследовании больших анатомических областей, поскольку число срезов будет весьма большим, что повлечет увеличение получаемой пациентом общей дозы облучения. С увеличением количества срезов возрастает также и продолжительность обследования.

Таким образом, толщина среза — это компромисс между требованиями высокого пространственного разрешения, низкой дозой облучения и малой продолжительностью обследования.

Для повышения разрешающей способности компьютерной томографии (КТ) предложена методика «усиления» изображения. Она основана на внутривенном введении рентгеноконтрастных препаратов, в результате чего увеличивается денситометрическая разность между здоровой тканью и патологическим образованием вследствие их разного кровоснабжения.

Методика усиления широко используется в дифференциальной диагностике доброкачественных и злокачественных опухолей, для выявления опухоли и метастазов в печени, гемангиом, патологических образований головного мозга, средостения и малого таза.

Спиральная КТ — это недавно появившаяся новая концепция сканирования. Она значительно увеличила эффективность диагностики в плане скорости и качества исследования выбранной анатомической области. В процессе спиральной КТ стол постоянно линейно движется через первичный веерообразный луч с одновременным постоянным вращением трубки и массива детекторов.

Результатом является спиралевидное движение веерообразного луча через тело пациента Поэтому больший объем тканей (анатомическая область) может быть просканирована за один период задержки дыхания пациентом. Вместе с тем, обеспечивая получение тонких соприкасающихся «срезов» (расположенных по спирали), спиральная КТ может обеспечить создание высококачественных трехмерных реконструкций (3D).

В комбинации с внутривенным болюсным контрастированием можно реконструировать КТ-ангиограммы, воспроизводящие проекционные трехмерные изображения сосудистого русла, выполнять исследования больших анатомических зон в различные фазы прохождения контраста.

Электронно-лучевая томография — разновидность КТ с очень малым временем получения изображения одного среза, что дает возможность одновременно получать динамические изображения нескольких параллельных срезов без артефактов от дыхания, сокращений сердца и пульсации сосудов.

Это дает возможность изучать быстро протекающие процессы (например, перфузия сердца, головного мозга и др.). Метод идеально подходит для выполнения КТ-ангиографии.

В заключение необходимо указать, что на компьютерных томографах последних поколений при исследовании всего тела при максимальном количестве срезов, включая получение сагиттального изображения, суммарная поглощенная доза составляет 0,07 Гр.

Клиническое применение рентгеновской компьютерной томографии

Подготовка пациентов для обследования на компьютерном томографе:

1. РКТ головного мозга, органов грудной клетки, костной системы, головы и шеи специальной подготовки не требует.

2. Рентгеновская компьютерная томография органов брюшной полости: за 70-90 минут до обследования пациенту дают внутрь 200 мл 1,5% раствора йодсодержащего контрастного вещества (например, 5 мл 76% раствора верографина на 200 мл воды) и укладывают на правый бок. За 15 мин до исследования пациенту опять дают такую же дозу контрастного вещества.

3. После рентгеновского исследования желудочно-кишечного тракта РКТ органов брюшной полости может проводиться не ранее, чем через 7-10 суток.

4. РКТ органов малого таза: за 24 часа и за 60-70 мин до обследования пациенту дают 200 мл 2% раствора контрастного вещества, накануне — очистительная клизма. Женщинам во влагалище вводят тампон с контрастным веществом для обозначения шейки матки. Исследование производится с наполненным мочевым пузырем.

5. Для выявления конкрементов в почках рентгеновской компьютерной томографии проводится через 10 суток после внутривенной урографии.

6. Для всех категории больных в выписке из истории болезни или направлении за подписью врача должен быть указан аллергологический анамнез с результатами пробы на переносимость йодсодержащих контрастных веществ.

7. Беспокойные больные и дети до 5 лет направляются на РКТ с анестезиологом.

8. Пациенты свыше 100 кг на РКТ исследование не принимаются.

Современные томографы обеспечивают возможность уточненной диагностики заболеваний практически всех органов, тканей и систем человека.

Головной мозг

Наибольшее практическое значение рентгеновской компьютерной томографии имеет в диагностике внутримозговых опухолей, распознавание которых основывается на выявлении прямых и косвенных признаков. Прямым признаком опухоли является изменение плотности ткани (повышенная, пониженная и гетерогенная).

К вторичным признакам относятся «объемный» эффект (смещение структур мозга относительно срединной линии, сдавление и деформация боковых желудочков, блокада ликворопроводящих путей с развитием гидроцефалии) и отек мозга как вблизи опухоли, так и по периферии.

Методика «усиления» изображения в значительной степени повышает контрастность опухоли, особенно при наличии перифокального отека. Метастатические опухоли диагностируются с помощью КТ с наиболее высокой достоверностью по сравнению с другими методами исследования.

При этом весьма эффективно используется методика «усиления» изображения: метастатические очаги быстро и интенсивно накапливают контрастное вещество. Плотность метастазов в зависимости от их морфологических особенностей может быть выше, ниже и равной плотности мозга.

Однако даже в последнем случае они хорошо контрастируются на фоне локального отека. Кальцификация метастазов наблюдается весьма редко и лишь при остеогенной саркоме.

Опухоли гипофиза в большинстве случаев с высокой точностью диагностируются при КТ и более чем у 90% больных имеют непосредственное изображение. Плотность опухоли по сравнению с окружающим мозгом чаще повышена или же наблюдается чередование участков повышенной и пониженной плотности.

Весьма характерно отсутствие перифокального отека, а также повышение плотности опухоли на 10-30 ед. HU после введения контрастного вещества. Из непрямых признаков наиболее постоянным является изменение размеров и формы турецкого седла.

Органы грудной клетки

В диагностике болезней легких и особенно средостения КТ предоставляет информацию, которая не может быть получена другими методами.

Органы брюшной полости

КТ позволяет получать изображение практически всех органов брюшной полости, забрюшинного пространства и таза.

Печень

Злокачественные новообразования печени характеризуются снижением плотности до +25-35 ед. HU. В зависимости от типа роста, раковые опухоли отображаются в виде узла или множественных очагов, нередко сливающихся друг с другом и имеющих гомогенную или негомогенную структуру.

Независимо от типа роста, развитие опухоли постоянно сопровождается расширением внутрилеченочных протоков, хорошо дифференцирующихся на томограммах. Благодаря высокой разрешающей способности КТ удается диагностировать опухоли до 0,5-1 см.

Метастатические поражения печени, как и первичные опухоли, вызывают очаговое снижение плотности печеночной ткани. Форма метастазов чаще округлая, контуры четкие. Методика «усиления» изображения, как правило, улучшает их визуализацию.

Поджелудочная железа выявляется при РКТ у 80% больных. Исследования проводят на фоне контрастирования 12-перстной кишки 5% р-ром гастрографина. позволяющего дифференцировать головку железы. При злокачественном процессе определяются неравномерное увеличение и изменение структуры поджелудочной железы, исчезновение перипанкреатической жировой клетчатки, а также отек. Плотность опухолей обычно составляет от +20 до +40 ед. HU и возрастает после «усиления» изображения.

Забрюшинное пространство

Большое значение имеет КТ при злокачественных поражениях органов забрюшинного пространства и в первую очередь лимфатических узлов, а также внеорганных опухолей. Как первичные, так и метастатические опухоли характеризуются увеличением размеров лимфоузлов и их слиянием с образованием конгломератов, нередко вызывающих смещение сосудов и деформацию их контуров.

Особенно ценно КТ при злокачественных лимфомах. так как позволяет не только оценивать состояние практически всех групп лимфатических узлов, но и выявлять поражение других органов. КТ дополняет и уточняет УЗИ в распознавании различной патологии и внеорганных опухолей забрюшинного пространства.

Почки и надпочечники обычно хорошо дифференцируются на томограммах. Чувствительность КТ в диагностике опухолей почек или метастазов в них достигает 9з-99%. При РКТ надпочечников выявляются новообразования размерами до 1 см.

Таз

При неорганных опухолях КТ по диагностической эффективности превосходит все другие методы, которые в основном позволяют выявить лишь их косвенные признаки. С помощью КТ с высокой достоверностью определяются опухоли нервной, жировой, мышечной и соединительной тканей, а также кисты и новообразования, исходящие из кровеносных и лимфатических сосудов.

При этом чувствительность КТ достигает 95-98%, а специфичность — 70-75% . С помощью КТ диагностируют уже на самых ранних стадиях опухоли матки, яичников, предстательной железы, мочевого пузыря.

При опухолях органов малого таза КТ имеет некоторые методические особенности. Накануне исследования больному делают очистительную клизму. За 3-4 ч до томографии назначают прием внутрь 200 мл 0,5% р-ра урографина для контрастирования кишечника, а за 30 мин — 400-500 мл воды для наполнения мочевого пузыря.

Непосредственно перед исследованием целесообразно контрастировать прямую кишку 100-150 мл 0,5% р-ра верографина, а у женщин для маркировки шейки матки — во влагалище ввести смоченный урографином тампон. При исследовании мочевого пузыря в него после удаления мочи с помощью катетера вводят 100-200 мл кислорода.

Опорно-двигательный аппарат

Несмотря на то. что костно-суставной аппарат является традиционным объектом рутинной рентгенографии, применение КТ открыло принципиально новые возможности в изучении его патологических состояний.

КТ-признаки первично-злокачественных новообразований костей разнообразны и зависят от гистологического строения, локализации и распространенности опухоли. Наиболее постоянными из них являются деструкция костной ткани, периостальная реакция и наличие мягкотканного компонента.

Сопоставление результатов КТ с данными рентгенологического и радионуклидного исследований показывает, что она с большей точностью выявляет как внутрикостную распространенность опухоли, так и объем мягкотканного компонента. Необходимо отметить, что при определении распространенности злокачественного процесса КТ несколько уступает магнитно-резонансной томографии КТ имеет большое значение в диагностике костных метастазов.

Для дифференциальной диагностики первично-злокачественных и метастатических поражений кости применяется пункционная биопсия под контролем КТ с высокой точностью и без осложнении.

КТ в планировании лучевой терапии

Программное обеспечение современных томографов позволяет с высокой эффективностью проводить топографическое планирование лучевой терапии. При этом обеспечивается оптимальное распределение дозы в опухоли с минимальным повреждением окружающих тканей. Кроме того, КТ позволяет осуществлять контроль за эффективностью лечения в процессе и после его окончания.

Противопоказания к проведению рентгеновской компьютерной томографии:

1. Беременность всех сроков.
2. Агонирующее состояние.
3. Наличие меноррагий.
4. Психические расстройства в фазе обострения.
5. Клаустрофобия.
6 Наличие металлов в обследуемой зоне.

Доступность и стоимость

КТ у нас в стране еще недостаточно доступна и одновременно — дорогое исследование (цена его на Западе выражается в сотнях долларов). Учитывая экономические соображения, ограниченную обеспеченность КТ и связанную с ней лучевую нагрузку, остро стоит вопрос об ее рациональном использовании.

Угляница К.Н., Луд Н.Г., Угляница Н.К.

medbe.ru

что это такое, показания, подготовка

Борьба с любым патологическим процессом, который формируется в организме человека, начинается с детальной диагностики при помощи лабораторных и инструментальных методов. Для этой цели в современной медицинской отрасли существует ряд квалифицированных специалистов и разработаны новейшие способы, позволяющие визуализировать любую часть человеческого тела.

Благодаря инновационным технологиям можно не только достоверно диагностировать заболевание, но и предупредить возможные врачебные ошибки. Ведь любому пациенту известно, что при постановке неверного диагноза недуг не поддается проводимым лечебно-профилактическим мероприятиям и принимает хроническое течение. А это может стоить человеку не только утраченного здоровья, но и жизни.

Во избежание подобных ситуаций практикующие специалисты широко применяют компьютерную диагностику. Одной из наиболее востребованных ее методик стала спиральная томография. Ее отличительной способностью является одновременное вращение источника рентгеновского излучения и передвижного стола с пациентом, благодаря которому появляется возможность получить детальные срезы обследуемой области и обнаружить ранние стадии формирующихся патологических процессов.

Очень часто пациент, получивший от лечащего врача направление на такое обследование, задает следующие вопросы: «Что представляет собой это исследование?», «Где его лучше сделать?» и «Сколько раз в год можно проходить диагностику?» В нашей статье мы представим читателям подробную информацию о такой новейшей и популярной диагностической методике, как спиральная компьютерная томография, показаниях и противопоказаниях к ее проведению, необходимых подготовительных мероприятиях к процедуре, ее разновидностях, преимуществах и недостатках.

Принцип действия СКТ

Обычное оборудование для компьютерного сканирования не обладает такими особыми ионизирующими детекторами, движущимися по спирали, специально предназначенным столом и высокой скоростью получения данных. Во время проведения обследования изображение органов получают при воздействии электромагнитных волн, длина которых варьирует в заданном диапазоне. Радиочастотные датчики считывают и анализируют полученные сигналы, а затем преобразовывают их в цифровую информацию, которая визуализируется на мониторе томографа.


Быстрота вращения стола томографа зависит от целей диагностической процедуры – высокая скорость позволяет исследовать большую область человеческого тела, значительно уменьшить длительность диагностики и снизить лучевую нагрузку на организм пациента

Впервые аппарат для спиральной компьютерной томографии разработала японская фирма Toshiba – его первое пробное испытание произошло в 1986 году. Широкое применение в медицинской отрасли данного диагностического способа началось с 1992 года – это случилось с внедрением оборудования компании Siemens. Современные модели томографов именно этой фирмы, позволяющие произвести за секунду не менее 16 слоев среза толщиной около 3 мм, используются в медицинской практике в настоящее время.

Спирально-компьютерная методика бывает двух видов: односрезовая, позволяющая получить 1 томографический слой и многослойная – одновременная реконструкция изображения из 64 слоев. Этот способ имеет ряд преимуществ перед обычной томографией:

  • высокую скорость сканирования;
  • увеличение зоны обследования;
  • возможность одновременного изучения нескольких зон;
  • минимальными дозами рентгеновского облучения;
  • получение детального изображения, позволяющего увидеть мельчайшие изменения структуры органов, их тканей и сосудов;
  • доступность для сканирования сложных зон человеческого тела – сосудов головного мозга и структуры бронхолегочной системы.

Более подробные сведения о технологиях спирального сканирования, его внедрении и быстром развитии можно найти в руководстве, написанном высококвалифицированными специалистами по КТ «Спиральная и многослойная компьютерная томография». Эта книга может стать постоянным спутником практикующего радиолога – в ней содержится информация:

  • об анатомических особенностях, необходимых для грамотного диагностического оценивания полученных компьютерных изображений;
  • освоении новых методов сканирования, таких как магнитно-спиральная ангиография и кардиальная резонансная томография;
  • их применении при различных патологиях.

Изучающие радиологические методы диагностики врачи могут изучить оба тома учебного пособия Матиаса Прокопа и приобрести необходимые знания

Показания

Данная методика применяется для диагностирования патологических процессов во всех органах. По сравнению с традиционными способами (МРТ и КТ) она особенно востребована при изучении черепа, позвоночного столба, органов грудной полости, проведении исследования с контрастированием мочевыделительной системы (почек, мочеточников, мочевого пузыря) и кровеносного русла, обнаружении сложных опухолевидных образований для определения их структуры и объема.

СКТ головного мозга применяют для исследования его сосудов, при подготовке к хирургическому вмешательству и в ходе его проведения. Особенности этой процедуры позволяют определить точную локализацию патологического процесса, характер и степень поражения функциональной деятельности органа: при травмах, дефектах развития, остром нарушении мозгового кровообращения, артериовенозных анастомозах, повышении давления внутри черепа.

СКТ легких используют для диагностирования ранних стадий сосудистых патологий, инфекционно-воспалительных и онкологических процессов. Привычная всем врачам-фтизиатрам и пульмонологам рентгеновская методика не позволяет получить трехмерное изображение органов и определить границу между патологическим очагом и нормальной легочной тканью. СКТ позвоночного столба применяют для выявления врожденных дефектов, травм, деструктивных изменений твердых и мягких тканей, воспалительных процессов, опухолевидных образований.

СКТ костного каркаса головы проводят для обнаружения врожденных пороков развития мозгового и лицевого черепа – костей носа, придатков его полостей, области глазниц. Мультиспиральную КТ, которая обеспечивает более высокую точность изображения, назначают при проведении подготовительных мероприятий перед оперативным вмешательством по реконструкции скелета головы.

Многослойная СКТ органов брюшной полости – желудка, печени, селезенки, пищевода, поджелудочной железы, печени, желчного пузыря, желчных протоков и кишечника, необходима при болезненных ощущениях в животе или малом тазу в течение длительного времени, диагностированных заболеваниях висцеральных органов – желчнокаменной болезни, дивертикулезе кишечника, циррозе печени, панкреатите и пр., подозрении на внутреннее кровотечение, воспалении брюшных лимфатических узлов и сосудов.


Этот метод более информативный, нежели простая компьютерная томография

СКТ сердца позволяет оценить функциональную деятельность коронарных сосудов и миокарда и обнаружить даже незначительные изменения. На заключительном этапе обследования пациента, при подозрении на злокачественный процесс, может быть использована МСКТ (мультиспиральная компьютерная томография) – этот метод позволяет получить трехмерное изображение, что необходимо при поставке точного диагноза, определении тактики лечебно-профилактических мероприятий и принятии решения о необходимости оперативного вмешательства.

Противопоказания

Обстоятельства, препятствующие применению метода спиральной томографии, такие же, как и при обычном компьютерном обследовании:

  • беременность;
  • детский возраст до 7 лет;
  • патологии щитовидной железы;
  • сахарный диабет;
  • повышенная восприимчивость к контрастирующему веществу;
  • психические расстройства;
  • масса тела более 120 кг;
  • наличие в теле больного металлических имплантатов.

Во время процедуры СКТ пациент получает определенную дозу (хотя и низкую) радиационного воздействия – поэтому перед ее проведением требуется консультация квалифицированного радиолога. Исключения составляют случаи, при которых диагностика необходима по жизненным показаниям.

Подготовительные мероприятия

В случаях нативных исследований пациенту не нужно придерживаться специальных правил подготовки, при применении контраста процедуру выполняют на голодный желудок. Перед обследованием брюшных органов следует воздерживаться от употребления продуктов, вызывающих усиленное газообразование. Накануне вечером нужно выпить слабительное средство или очистить кишечник с помощью клизмы, а затем отказаться трапезы до выполнения диагностики.

Направляясь на диагностическую процедуру, пациенту следует взять с собой направление и медицинскую документацию – итоговые данные предыдущих исследований, заключения консультаций узких специалистов, выписной эпикриз и пр.

Порядок выполнения диагностики

Накануне процедуры ужин должен быть облегченным, завтракать предпочтительнее жидкой кашей и соком. За 4 часа до процедуры пациента необходимо прекратить прием пищи и жидкости. Перед началом исследования пациенту могут предложить переодеться в свободную рубашку и снять с себя все украшения.

При контрастной СКТ вводится йодосодержащий препарат, способ его введения зависит от обследуемой зоны:

  • внутривенная инъекция осуществляется при диагностике сосудистого русла, почек и головного мозга;
  • пероральный прием – при оценивании состояния кишечника.

Для получения точных снимков, врач может ограничить движения больного с помощью специальных подушек и ремней

Пациента укладывают на специальный стол, который двигается в сторону сканирующего устройства. В течение некоторого времени больному необходимо лежать неподвижно и при требовании медицинского специалиста задерживать дыхание. По завершении процедуры врач обрабатывает полученные данные и готовит заключение.

Преимущества и недостатки метода

Качествами, выгодно отличающими спиральную от обычной компьютерной томографии, являются:

  • высокая скорость сканирования;
  • визуализация одной анатомической зоны за короткий временной промежуток;
  • возможность получения пространственного трехмерного изображения, позволяющего определить точную локализацию и характер патологического процесса;
  • отсутствие на снимках различных помех, мешающих постановке грамотного диагноза.

Недостатками диагностики являются различные ограничения и противопоказания для ее проведения, высокая стоимость процедуры и относительная малодоступность – не каждое медицинское учреждение оснащено соответствующим дорогостоящим оборудованием. В завершении всей вышеизложенной информации хочется отметить, что однозначно ответить на вопрос: «Как часто можно проходить СКТ?», сложно. При выполнении исследования лучевая нагрузка колеблется от 2 до 14 миллизиверт.

Для суммарного учета радиационного облучения за 1 год в амбулаторной карте больного ведется специальный лист, в котором указывается полученная доза, а при выполнении всех диагностических процедур применяются индивидуальные средства защиты. К тому же, метод спиральной компьютерной томографии вывел диагностику заболеваний на высокий уровень и открыл в современной медицинской отрасли новые возможности!

apkhleb.ru

Компьютерная томография | Компью́терная томогра́фия

Среди всех существующих томографических методов особые успехи достигнуты в радиационной (рентгеновской) компьютерной томографии (КТ). Предпосылкой ее появления послужили недостатки обычной рентгенографии, породившие идею получения не одного, а ряда снимков, выполненных под разными ракурсами, и определения по ним путем математической обработки плотностей исследуемого вещества в ряде сечений. Преимуществами КТ по сравнению с традиционной рентгенографией являются:

-    отсутствие теневых наложений на изображении;

-    более высокая точность измерения геометрических соотношений;

-    чувствительность на порядок выше, чем при обычной рентгенографии.

Впервые задачу реконструкции изображения рассмотрел в 1917 г. австрийский математик Johann Radon, который вывел зависимость поглощения рентгеновского излучения от плотности вещества на некотором луче зрения. Решение задачи было отложено на много лет, и лишь в 1956-58 гг. советские ученые разработали первую систему реконструкции рентгеновских медицинских изображений.

Метод компьютерной томографии в 1961 г. предложил американский нейрорентгенолог William Oldendorf, а в 1963 г. математик Allan M. Cor-mack (США) провел лабораторные эксперименты по рентгеновской томографии и показал возможность выполнения реконструкции изображения. Первая вполне качественная томограмма головного мозга человека получена в 1972 г. (рис.1) [5].

Рис. 1. Первый КТ-сканер (а) и первая томограмма головного мозга (б)

В 1973 г. инженер-исследователь Godfrey Hounsfield (Великобритания) разработал первую на западе коммерческую систему - сканер головного мозга английской фирмы EMI. Он позволял получать изображения с разрешением 80х80 пикселов (размер пиксела 3 мм). Получение одного изображения требовало 4,5 мин на сбор данных и 1,5 мин на реконструкцию. Высокая продолжительность эксперимента накладывала ограничение на область исследования, и первые томографы использовались только для изучения голов-

ного мозга. Впервые отечественный медицинский рентгеновский томограф СРТ-1000 был разработан в 1978 г. под руководством И.Б. Рубашова, бывшего в 1987-1998 гг. директором ВНИИ компьютерной томографии.

К 1979 г. серийно выпускаемые многими западными фирмами томографы, несмотря на их внушительную стоимость (сканер EMI стоил $390000), работали уже более чем в 2000 клиниках мира.

В этом же 1979 г. G. Hounsfield и A. Cormack за выдающийся вклад в развитие КТ были удостоены Нобелевской премии в области медицины. Спустя три года, в 1982 г., Нобелевской премии по химии был удостоен известный английский микробиолог Aaron Klug, который внес значительный вклад в развитие экспериментальных и расчетных методов трехмерной КТ.

Конструкция компьютерных томографов за годы их существования претерпела значительные изменения. В целом можно выделить пять поколений КТ-сканеров.

В томографах первого поколения, появившихся в 1973 г., имелась одна остронаправленная рентгеновская трубка и один детектор, которые синхронно передвигались вдоль рамы (рис. 2,а). Измерения проводились в 160 положениях трубки, затем рама поворачивалась на угол 1° и измерения повторялись. Сами измерения длились около 4,5 мин, а обработка полученных данных и реконструкция изображения на специальном компьютере занимали 2,5 ч.

Рис. 2. Схематическое изображение компьютерных томографов четырех

поколений

Томографы второго поколения (например, CT-1010, EMI, Великобритания) имели уже несколько детекторов, работающих одновременно, а трубка излучала не остронаправленный, а веерный пучок (рис. 2,6). Так же как и в томографах первого поколения, здесь использовалось параллельное сканирование, но угол поворота трубки увеличился до 30°. Общее время измерений, необходимое для получения одного изображения, значительно сократилось и составляло 20 с. Типичным для данной схемы сканирования является то, что она учитывает только первичные фотоны источника. Первый отечественный компьютерный томограф СРТ-1000 относился к томографам второго поколения.

В томографах третьего поколения (середина 1970-х гг.) трубка излучала широкий веерный пучок лучей, направленный на множество детекторов (около 700), расположенных по дуге (рис. 2,в). Усовершенствованная конструкция сделала возможным непрерывное вращение трубки и детекторов на 360° по часовой стрелке за счет использования кольца скольжения при подведении напряжения. Это позволило исключить стадию перемещения трубки и сократить время, необходимое для получения одного изображения до 10 с. Использование таких томографов обеспечило возможность проведения исследования движущихся частей тела (легких и брюшной полости) и разработки спирального алгоритма сбора данных. Все современные медицинские компьютерные томографы относятся к третьему поколению.

В томографах четвертого поколения (Pfizer 0450, США) имелось сплошное неподвижное кольцо детекторов (1088 люминисцентных датчиков) и излучающая веерный пучок лучей рентгеновская трубка, вращающаяся вокруг пациента внутри кольца (рис. 2,г). Время сканирования для каждой проекции сократилось до 0,7 с, а качество изображения улучшилось. В данных томографах необходимо учитывать влияние эффекта рассеяния при переносе излучения, которое в зависимости от энергии используемой источником может быть рэлеевским или комптоновским.

Таблица 1

Параметры КТ-сканеров третьего и четвертого поколений

Характеристика

Третье поколение

Четвертое поколение

Конфигурация

Вращающаяся трубка, вращающиеся детекторы

Вращающаяся трубка, неподвижные детекторы

Время сбора данных (одна проекция)

До 10 с

1мс

Число детекторов

500-700

1088

Тип детекторов

Камера ионизации

Т вердотельные

Неисправность

детектора

Неправильная регистрация в каждой из проекций

Отсутствует одна проекция

Влияние неустойчивости трубки

Большого эффекта нет

Круговые артефакты на изображении

В начале 1980-х появились электронно-лучевые томографы (томографы пятого поколения). В них поток электронов создается неподвижной электронно-лучевой пушкой, расположенной за томографом (рис. 3). Проходя сквозь вакуум, поток фокусируется и направляется электромагнитными катушками на вольфрамовую мишень, представляющую собой дугу окружности (около 210°), находящуюся под столом пациента. Мишени расположены в четыре ряда, имеют большую массу и охлаждаются проточной водой, что решает проблемы теплоотвода. Напротив мишеней установлена неподвижная система быстродействующих твердотельных детекторов, имеющая форму дуги 216°. Данные томографы используются при исследованиях сердца, т.к. позволяют получать изображение за 33 мс со скоростью 30 кадров/с, а число срезов не ограничено теплоемкостью трубки. Такие изображения не содержат артефактов, вызванных пульсацией сердца, но имеют более низкое соотношение сигнал/шум [50].

Рис. 3. Схема электронно-лучевого томографа: 1 - электронная пушка; 2 - поток электронов; 3 - фокусирующая катушка; 4 - направляющая катушка; 5 - мишень; 6 - детекторы

www.kievoncology.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *