что это такое, действие, применение в спорте
© logos2012 — stock.adobe.com
Креатинфосфат (английское наименование – creatine phosphate, химическая формула – C4h20N3O5P) представляет собой высокоэнергетическое соединение, которое образуется в процессе обратимого фосфорилирования креатина (creatine) и накапливается в основном (95 %) в мышечных и нервных тканях.
Его главная функция – это обеспечение стабильности выработки внутриклеточной энергии за счет постоянного поддержания необходимого уровня аденозинтрифосфорной кислоты (АТФ) путем ресинтеза.
Биохимия креатинфосфата
В организме ежесекундно происходит множество биохимических и физиологических процессов, которые требуют затрат энергии: синтезирование веществ, транспортировка к органам клеток молекул органических соединений и микроэлементов, совершение мышечных сокращений. Необходимая энергия вырабатывается при гидролизе АТФ, каждая молекула которой за сутки ресинтезируется более 2000 раз. Она не накапливается в тканях, и для нормального функционирования всех внутренних систем и органов требуется постоянное восполнение ее концентрации.
Для этих целей и предназначен креатинфосфат. Он постоянно вырабатывается и является основным компонентом реакции восстановления АТФ из АДФ, которая катализируется специальным ферментом – креатинфосфокиназой. В отличие от аденозинтрифосфорной кислоты в мышцах всегда имеется его достаточный запас.
У здорового человека объем креатинфосфата составляет около 1 % общей массы тела.
В процессе креатинфосфатаза участвуют три изофермента креатинфосфокиназы: типа MM, MB и BB, которые отличаются местом расположения: первые два – в скелетных и сердечных мышцах, третий – в тканях головного мозга.
Ресинтез АТФ
Регенерирование АТФ креатинфосфатом является самым быстрым и эффективным из трех способов получения энергии. Достаточно 2-3 секунд работы мышц под интенсивной нагрузкой, и ресинтез уже достигает максимальной производительности. При этом энергии вырабатывается в 2-3 раза больше, чем при гликолизе, ЦТК и окислительном фосфорилировании.
© makaule — stock.adobe.com
Это происходит благодаря локализации участников реакции в непосредственной близости от митохондрий и дополнительной активации катализатора продуктами расщепления АТФ. Поэтому резкое увеличение интенсивности работы мышц не приводит к снижению концентрации аденозинтрифосфорной кислоты. В этом процессе происходит интенсивное расходование креатинфосфата, через 5-10 секунд его скорость резко начинает снижаться, и на 30 секунде – уменьшается до половины максимального значения. В дальнейшем в дело вступают другие методы преобразования макроэнергических соединений.
Особую значимость нормальное протекание креатинфосфатной реакции имеет для спортсменов, которые связаны с рывковыми изменениями мышечной нагрузки (бег на короткие дистанции, тяжелая атлетика, различные занятия с тяжестями, бадминтон, фехтование и прочие игровые виды взрывного характера).
Биохимия только этого процесса в состоянии обеспечивать суперкомпенсацию затрат энергии на начальной фазе работы мышц, когда резко меняется интенсивность нагрузки и требуется отдача максимальной мощности в минимальное время. Тренировки в вышеназванных видах спорта должны проводиться с обязательным учетом достаточной насыщенности организма источником такой энергии – креатином и «аккумулятором» макроэнергических связей – креатинфосфатом.
В состоянии покоя или при значительном снижении интенсивности мышечной активности уменьшается расход АТФ. Скорость окислительного ресинтеза остается на прежнем уровне и «излишки» аденозинтрифосфорной кислоты используются для восстановления запасов креатинфосфата.
Синтез креатина и креатинфосфата
Основные органы, которые производят креатин, – это почки и печень. Процесс начинается в почках с выработки из аргинина и глицина гуанидин ацетата. Затем в печени из этой соли и метионина синтезируется креатин. Кровотоком он разносится к мозговым и мышечным тканям, где и происходит его преобразование в креатинфосфат при наличии соответствующих условий (отсутствие или малая мышечная активность и достаточное количество молекул АТФ).
Клиническое значение
В здоровом организме постоянно происходит превращение части креатинфосфата (около 3 %) в креатинин в результате не ферментативного дефосфорилирования. Это количество неизменно, и определяется объемом массы мускулатуры. Как невостребованный материал он беспрепятственно выводится с мочой.
Диагностировать состояние почек позволяет анализ суточной экскреции креатинина. Малая концентрация в крови может свидетельствовать о проблемах с мышцами, а превышение нормы указывает на возможные заболевания почек.
Изменения уровня креатинкиназы в крови дает возможность выявить симптомы целого ряда сердечно-сосудистых заболеваний (инфаркта миокарда, гипертонии) и наличия патологических изменений в головном мозге.
При атрофии или заболеваниях мышечной системы выработанный креатин не усваивается в тканях и выводится с мочой. Его концентрация зависит от тяжести заболевания или степени утраты работоспособности мышц.
К повышенному содержанию креатина в моче может привести его передозировка из-за несоблюдения правил инструкции по применению спортивной добавки.
Оцените материалcross.expert
— креатин и креатинин — Биохимия
Креатин – вещество скелетных мышц, миокарда, нервной ткани. В виде креатинфосфата креатин является «депо» макроэргических связей, используется для быстрого ресинтеза АТФ во время работы клетки.
Использование креатинфосфата для ресинтеза АТФ
Особенно показательна роль креатина в мышечной ткани. Креатинфосфат обеспечивает срочный ресинтез АТФ в первые секунды работы (5‑10 сек), когда никакие другие источники энергии (анаэробный гликолиз, аэробное окисление глюкозы, β-окисление жирных кислот) еще не активированы, и кровоснабжение мышцы не увеличено. В клетках нервной ткани креатинфосфат поддерживает жизнеспособность клеток при отсутствии кислорода.
При мышечной работе ионы Са2+, высвободившиеся из саркоплазматического ретикулума, являются активаторами креатинкиназы. Реакция еще интересна тем, что на ее примере можно наблюдать обратную положительную связь — активацию фермента продуктом реакции
Около 3% креатинфосфата постоянно в реакции неферментативного дефосфорилирования превращается в креатинин. Количество креатинина, выделяемое здоровым человеком в сутки, всегда почти одинаково и зависит только от объема мышечной массы. Уровень активности креатинкиназы в крови и концентрация креатинина в крови и моче являются ценными диагностическими показателями.
Образование креатинина из креатинфосфата
Синтез креатина
Синтез креатина идет последовательно в почках и печени в двух трансферазных реакциях. По окончании синтеза креатин с током крови доставляется в мышцы или мозг.
Реакции синтеза креатина в почках и печени
Здесь при наличии энергии АТФ (во время покоя или отдыха) он фосфорилируется с образованием креатинфосфата.
Синтез креатинфосфата
Если синтез креатина опережает возможность его фиксации в мышечной ткани, то развивается креатинурия – появление креатина в моче. Физиологическая креатинурия наблюдается в первые годы жизни ребенка. Иногда к физиологической относят и креатинурию стариков, которая возникает как следствие атрофии мышц и неполного использования образующегося в печени креатина. При заболеваниях мышечной системы (при миопатии или прогрессирующей мышечной дистрофии) в моче наблюдаются наибольшие концентрации креатина – патологическая креатинурия.
biokhimija.ru
Энергетические процессы в мышце — SportWiki энциклопедия
На рисунке изображены преобладающие источники энергии во время выполнения нагрузки Источники энергии для образования АТФЕстественно, что для совершения мышечного движения требуется энергия. В организме человека существуют разные источники энергии, которые последовательно включаются один за другим. Рассмотрим каждый из них.
АТФ[править | править код]
Универсальным источником энергии в живом организме является молекула АТФ, которая образуется в цитратном цикле Кребса. Под действием фермента АТФазы молекула АТФ гидролизуется, отсоединяя фосфатную группу в виде ортофосфорной кислоты (Н3РО4), и превращается в АДФ, при этом высвобождается энергия.
АТФ + h3O = АДФ+ h4PO4 + энергия
Головка миозинового мостика при контакте с актином обладает АТФазной активностью и соответственно возможностью расщеплять АТФ и получать энергию, необходимую для движения.
Количества АТФ, которое содержится в мышце, достаточно для выполнения движений в течение 2-5 первых секунд.
Креатинфосфат[править | править код]
Запас молекул АТФ в мышце ограничен, поэтому расход энергии при работе мышцы требует постоянного его восполнения, это происходит за счет креатинфосфата. Креатинфосфат обладает способностью отсоединять фосфатную группу и превращаться в креатин, присоединяя фосфатную группу к АДФ, которая превращается в АТФ.
АДФ + креатинфосфат = АТФ + креатин.
Эта реакция получила название – реакции Ломана. Именно поэтому креатин имеет большое значение в бодибилдинге.
Надо заметить, что креатин эффективен только при выполнении анаэробных (силовых) упражнений, так как креатинфосфата достаточно примерно на 2 минуты интенсивной работы, затем подключаются другие источники энергии. Соответственно, в лёгкой атлетике приём креатина как добавки для увеличения атлетических показателей малоэффективен.
Запасы креатинфосфата в волокне не велики, поэтому он используется в качестве источника энергии только на начальном этапе работы мышцы, до момента активизации других более мощных источников – анаэробного и затем аэробного гликолиза. По окончании работы мышцы реакция Ломана идет в обратном направлении, и запасы креатинфосфата в течение нескольких минут восстанавливаются.
Энергетический метаболизм скелетных мышц[править | править код]
Алактатные механизмы[править | править код]
КФ обеспечивает запас энергии фосфата для ресинтеза АТФ из АДФ при наступлении сократительной деятельности (рис. 3):
КФ + АДФ Креатинкиназа К + АТФ (1)
В состоянии покоя мышечные волокна наращивают концентрацию КФ до пяти раз больше, чем АТФ. В начале сокращения, когда концентрация АТФ начинает падать, а АДФ повышаться вследствие ускорения разложения АТФ, массовая активность способствует образованию АТФ из КФ.
Хотя образование АТФ из КФ происходит быстро, требуя одной единственной ферментативной реакции (1), количество АТФ, которое может быть получено в результате этого процесса, ограничено начальной концентрацией КФ. Мышечные волокна также содержат миокиназу, которая катализирует образование одной молекулы АТФ и одной молекулы АМФ из двух молекул АДФ. АТФ и КФ, вместе взятые, могут обеспечить максимальную силу в течение 8—10 с. Таким образом, энергия, полученная от фосфагенной системы, используется для коротких всплесков максимальной мышечной активности, необходимых в легкой и тяжелой атлетике (забег на 100 м, толкание ядра или поднятие тяжестей).
Гликолиз[править | править код]
Хотя метаболизм по гликолитическому пути производит лишь небольшое количество АТФ из каждой усвоенной единицы глюкозы, он может обеспечить быстрый синтез большого количества АТФ при наличии достаточного количества ферментов и субстрата. Этот процесс может также происходить в отсутствие кислорода:
Глюкоза анаэробный быстрый гликолиз 2 АТФ + 2 лактата (2)
Глюкоза для гликолиза поступает либо из крови, либо из запасов гликогена. Когда исходным материалом выступает гликоген, из одной единицы потребленной глюкозы в результате фосфоролитического гликогенолиза образуется три молекулы АТФ. По мере того, как мышечная активность становится интенсивнее, для анаэробного расщепления гликогена мышц требуется все больше и больше АТФ, и, соответственно, увеличивается производство молочной кислоты. Анаэробный гликолиз может обеспечить энергию на 1,3-1,6 мин максимальной мышечной активности.
Образование молочной кислоты понижает уровень pH в мышечных волокнах. Это препятствует действию ферментов и вызывает боль, если удаление молочной кислоты происходит слишком медленно по сравнению с ее образованием.
Окислительное фосфорилирование[править | править код]
Рис. 3. Метаболические пути синтеза АТФ, используемые во время сокращения и расслабления мышц. В то время как анаэробное расщепление КФ и гликолиз происходят в цитозоле, окислительное фосфорилирование имеет место в митохондриях.Источник: Vander et al. (1990)- Основная статья: Окислительное фосфорилирование
При умеренном уровне физической нагрузки, например, при беге на 5000 м или марафоне, большая часть АТФ, используемого для сокращения мышц, образуется путем окислительного фосфорилирования. Окислительное фосфорилирование позволяет высвободить из глюкозы гораздо больше энергии по сравнению с отдельно взятым анаэробным гликолизом:
Глюкоза + O2-> 38 АТФ + СO 2+ Н2O. (3)
Жиры катаболизируются только с помощью окислительных механизмов, при этом выделяется много энергии. Аминокислоты тоже могут быть метаболизированы подобным образом. Три метаболических пути образования АТФ для сокращения и расслабления мышц показаны на рис. 3.
В течение первых 5~10 мин умеренной физической нагрузки главным потребляемым «топливом» является собственный гликоген мышц. В течение следующих 30 мин доминирующими становятся переносимые кровью вещества; глюкоза крови и жирные кислоты вносят примерно одинаковый вклад в потребление мышцами кислорода. По истечении этого периода все более важную роль приобретают жирные кислоты. Важно подчеркнуть взаимодействие между анаэробными и аэробными механизмами в образовании АТФ во время физической нагрузки. Вклад анаэробного образования АТФ больше при краткосрочной нагрузке высокой интенсивности, в то время как при более продолжительных нагрузках низкой интенсивности преобладает аэробный метаболизм.
Восстановление и кислородная задолженность[править | править код]
После того как физическая нагрузка закончилась, поглощение кислорода все еще остается выше нормы (табл.). С недавнего времени для обозначения кислородной задолженности используется также термин «избыточное потребление кислорода после физической нагрузки». Сначала его уровень очень высок, пока тело восстанавливает запасы КФ и АТФ, возвращая тканям запасенный кислород, а затем в течение еще одного часа потребление идет на более низком уровне, пока удаляется молочная кислота. Поэтому ранние и последние фазы кислородной задолженности называют соответственно алактатной и лактатной кислородной задолженностью. Повышение температуры тела также говорит о более высокой скорости метаболизма и росте потребления кислорода.
Чем продолжительнее и интенсивнее физическая нагрузка, тем больше времени занимает восстановление. Например, на восстановление после полного истощения гликогена мышц зачастую требуется несколько дней, а не секунд, минут или часов, необходимых для восстановления запасов КФ и АТФ и удаления молочной кислоты. Физическая нагрузка большой интенсивности, вероятно, приводит к микротравмам мышечных волокон, и их восстановление занимает некоторое время.
Компоненты кислородной задолженности. После длительной, тяжелой физической нагрузки дыхание остается выше нормы для удовлетворения повышенной потребности в кислороде
Компонент | Пояснение |
1 | Восстановление запасов кислорода в тканях(около 1 л) |
2 | Восстановление уровней креатинфосфата и других богатых энергией фосфатов (около 1-1,5 л) |
3 | Удаление молочной кислоты путем глюконеогенеза и другими путями (до 12 л) |
4 | Стимуляция метаболизма вследствие повышения уровня адреналина (около 1 л) |
5 | Дополнительное потребление кислорода в дыхательных мышцах и сердце (около 0,5 л) |
6 | Общее усиление метаболизма вследствие более высокой температуры тела* |
Q10 — повышение температуры на 10 °С может удвоить скорость метаболизма, если клетки могут справляться с такими изменениями температуры
sportwiki.to
Креатинфосфат — срочный резерв энергии
Креатин – вещество скелетных мышц, миокарда, нервной ткани. В виде креатинфосфата креатин является «депо» макроэргических связей, используется для быстрого ресинтеза АТФ во время работы клетки.
Использование креатинфосфата для ресинтеза атф
Особенно показательна роль креатина в мышечной ткани. Креатинфосфат обеспечивает ресинтез АТФ в первые секунды работы (5‑10 сек), когда ни анаэробный гликолиз, ни аэробное окисление глюкозы и жирных кислот еще не активировано, и кровоснабжение мышцы не увеличено. В клетках нервной ткани креатинфосфат поддерживает жизнеспособность клеток при отсутствии кислорода.
При мышечной работе ионы Са2+, высвободившиеся из саркоплазматического ретикулума, являютсяактиваторами креатинкиназы. Реакция еще интересна тем, что на ее примере можно наблюдать обратную положительную связь — активацию фермента продуктом реакции креатином. Это позволяет избежать снижения скорости реакции по ходу работы, которое должно было бы произойти по закону действующих масс из-за снижения концентрации креатинфосфата в работающих мышцах.
Около 3% креатинфосфата постоянно в реакции неферментативного дефосфорилирования превращается вкреатинин. Количество креатинина, выделяемое здоровым человеком в сутки, всегда почти одинаково и зависит только от объема мышечной массы.
Образование креатинина из креатинфосфата
Синтез креатина идет последовательно в почках и печени в двух трансферазных реакциях. По окончании синтеза креатин с током крови доставляется в мышцы или мозг.
Реакции синтеза креатина в почках и печени
Здесь при наличии энергии АТФ (во время покоя или отдыха) он фосфорилируется с образованием креатинфосфата.
Синтез креатинфосфата
Если синтез креатина опережает возможности его фиксации в мышечной ткани, то развивается креатинурия– появление креатина в моче. Физиологическая креатинурия наблюдается в первые годы жизни ребенка. Иногда к физиологической относят и креатинурию стариков, которая возникает как следствие атрофии мышц и неполного использования образующегося в печени креатина. При заболеваниях мышечной системы (при миопатии или прогрессирующей мышечной дистрофии) в моче наблюдаются наибольшие концентрации креатина – патологическая креатинурия.
В мышце дезаминирование аминокислот идет особым образом
Так как в скелетных мышцах нет глутаматдегидрогеназы и нет возможности производить прямое дезаминирование аминокислот, то для этого существует особый путь.
В мышечных клетках при интенсивной работе, когда идет распад мышечных белков, активируетсяальтернативный способ дезаминирования аминокислот – цикл АМФ-ИМФ. Образовавшийся при трансаминировании глутамат при участии аспартатаминотрансферазы реагирует с оксалоацетатом и образуется аспарагиновая кислота. Аспартат далее передает свою аминогруппу на инозинмонофосфат (ИМФ) с образованием АМФ, который в свою очередь подвергается дезаминированию с образованием свободного аммиака.
Реакции непрямого дезаминирования аминокислот в мышечной ткани
Процесс носит защитный характер, т.к. при мышечной работе выделяется молочная кислота. Аммиак, связывая ионы Н+, предотвращает закисление цитозоля миоцитов.
studfiles.net
Креатинфосфат — срочный резерв энергии
Креатин – вещество скелетных мышц, миокарда, нервной ткани. В виде креатинфосфата креатин является «депо» макроэргических связей, используется для быстрого ресинтеза АТФ во время работы клетки.
Использование креатинфосфата для ресинтеза атф
Особенно показательна роль креатина в мышечной ткани. Креатинфосфат обеспечивает ресинтез АТФ в первые секунды работы (5‑10 сек), когда ни анаэробный гликолиз, ни аэробное окисление глюкозы и жирных кислот еще не активировано, и кровоснабжение мышцы не увеличено. В клетках нервной ткани креатинфосфат поддерживает жизнеспособность клеток при отсутствии кислорода.
При мышечной работе ионы Са2+, высвободившиеся из саркоплазматического ретикулума, являютсяактиваторами креатинкиназы. Реакция еще интересна тем, что на ее примере можно наблюдать обратную положительную связь — активацию фермента продуктом реакции креатином. Это позволяет избежать снижения скорости реакции по ходу работы, которое должно было бы произойти по закону действующих масс из-за снижения концентрации креатинфосфата в работающих мышцах.
Около 3% креатинфосфата постоянно в реакции неферментативного дефосфорилирования превращается вкреатинин. Количество креатинина, выделяемое здоровым человеком в сутки, всегда почти одинаково и зависит только от объема мышечной массы.
Образование креатинина из креатинфосфата
Синтез креатина идет последовательно в почках и печени в двух трансферазных реакциях. По окончании синтеза креатин с током крови доставляется в мышцы или мозг.
Реакции синтеза креатина в почках и печени
Здесь при наличии энергии АТФ (во время покоя или отдыха) он фосфорилируется с образованием креатинфосфата.
Синтез креатинфосфата
Если синтез креатина опережает возможности его фиксации в мышечной ткани, то развивается креатинурия– появление креатина в моче. Физиологическая креатинурия наблюдается в первые годы жизни ребенка. Иногда к физиологической относят и креатинурию стариков, которая возникает как следствие атрофии мышц и неполного использования образующегося в печени креатина. При заболеваниях мышечной системы (при миопатии или прогрессирующей мышечной дистрофии) в моче наблюдаются наибольшие концентрации креатина – патологическая креатинурия.
В мышце дезаминирование аминокислот идет особым образом
Так как в скелетных мышцах нет глутаматдегидрогеназы и нет возможности производить прямое дезаминирование аминокислот, то для этого существует особый путь.
В мышечных клетках при интенсивной работе, когда идет распад мышечных белков, активируетсяальтернативный способ дезаминирования аминокислот – цикл АМФ-ИМФ. Образовавшийся при трансаминировании глутамат при участии аспартатаминотрансферазы реагирует с оксалоацетатом и образуется аспарагиновая кислота. Аспартат далее передает свою аминогруппу на инозинмонофосфат (ИМФ) с образованием АМФ, который в свою очередь подвергается дезаминированию с образованием свободного аммиака.
Реакции непрямого дезаминирования аминокислот в мышечной ткани
Процесс носит защитный характер, т.к. при мышечной работе выделяется молочная кислота. Аммиак, связывая ионы Н+, предотвращает закисление цитозоля миоцитов.
studfiles.net
противопоказания, побочное действие, дозировки, состав – лиофилизат д/пригот. раствор а д/инфузий в справочнике лекарственных средств
Препарат вводят только внутривенно (в/в, струйно или капельно) в соответствии с назначением врача в течение 30-45 мин по 1 г 1-2 раза/сут.
Креатинфосфат вводят в максимально короткие сроки с момента проявления признаков ишемии, что улучшает прогноз заболевания.
Содержимое флакона растворяют в 10 мл воды для инъекций, 10 мл 0.9% раствора натрия хлорида для инфузий или 5% раствора глюкозы для инфузий. Интенсивно встряхивают флакон до полного растворения. Как правило, полное растворение лекарственного средства занимает не менее 3 мин.
Креатинфосфат применяют в составе кардиоплегических растворов в концентрации 10 ммоль/л (~2.1 г/л) для защиты миокарда во время операции на сердце. Добавляют в состав раствора непосредственно перед введением.
Острый инфаркт миокарда
1 сутки:
- 2-4 г препарата, разведенного в 50 мл воды для инъекций, в виде в/в быстрой инфузии с последующей в/в инфузией 8-16 г в 200 мл 5% раствора декстрозы (глюкозы) в течение 2 ч.
2 сутки:
- 2-4 г в 50 мл воды для инъекций в/в капельно (длительность инфузии не менее 30 минут) 2 раза/сут.
3 сутки:
- 2 г в 50 мл воды для инъекций в/в капельно (длительность инфузии не менее 30 минут) 2 раза/сут. При необходимости курс инфузий по 2 г препарата 2 раза/сут можно проводить в течение 6 дней. Наилучшие результаты лечения регистрировались у больных, которым первое введение препарата осуществляли не позднее чем через 6–8 ч от появления клинических проявлений заболевания.
Хроническая сердечная недостаточность
В зависимости от состояния пациента можно начать лечение «ударными» дозами по 5-10 г препарата в 200 мл 5% раствора декстрозы (глюкозы) в/в капельно со скоростью 4-5 г/ч в течение 3-5 дней, а затем перейти на в/в капельное введение (длительность инфузии не менее 30 мин) 1-2 г препарата, разведенного в 50 мл воды для инъекций, 2 раза/сут в течение
2-6 недель или сразу начать в/в капельное введение поддерживающих доз препарата Креатинфосфат (1-2 г в 50 мл воды для инъекций 2 раза/сут в течение 2-6 недель).
Интраоперационная ишемия миокарда
Рекомендуется курс в/в капельных инфузий длительностью не менее 30 мин по 2 г препарата в 50 мл воды для инъекций 2 раза/сут в течение 3-5 дней, предшествующих хирургическому вмешательству, и в течение 1-2 дней после него. Во время хирургического вмешательства Креатинфосфат добавляют в состав обычного кардиоплегического раствора в концентрации 10 ммоль/л или 2.5 г/л непосредственно перед введением.
Интраоперационная ишемия нижних конечностей
2-4 г препарата Креатинфосфат в 50 мл воды для инъекций в виде в/в быстрой инфузии до хирургического вмешательства с последующим в/в капельным введением 8-10 г препарата в 200 мл 5% раствора декстрозы (глюкозы) со скоростью 4-5 г/ч во время хирургического вмешательства и в период реперфузии.
Метаболические нарушения миокарда в условиях гипоксии
Препарат вводят в/в 1-2 г/сут в виде болюсной инъекции или инфузии.
Спортивная медицина
Для профилактики развития синдрома острого и хронического физического перенапряжения и улучшения адаптации спортсменов к экстремальным физическим нагрузкам Креатинфосфат следует применять в дозе 1 г/сут в 50 мл воды для инъекций в/в капельно (длительность инфузии не менее 30 мин) в течение 3-4 недель.
www.vidal.by
Креатинфосфат — SportWiki энциклопедия
Креатинфосфорная кислота (креатинфосфат, фосфокреатин) — 2-[метил-(N’-фосфонокарбоимидоил)амино]уксусная кислота. Бесцветные кристаллы, растворимые в воде, легко гидролизуется с расщеплением фосфамидной связи N-P в кислой среде, устойчива в щелочной. Креатинфосфат — продукт обратимого метаболического N-фосфорилирования креатина, являющийся, подобно АТФ, высокоэнергетическим соединением.
Аденозинтрифосфат является средством выработки энергии тела, а креатинфосфат используется для воспроизводства АТФ из АДФ в результате метаболизма АТФ. Из-за усталости, постепенно накапливающейся во время работы с весом или выполнения интенсивной метаболической деятельности, снижаются запасы таких источников энергии тела, как фосфаты и гликоген. Затем тело восполняет запасы энергии до исходного уровня (или выше) за счет восстановления уровня фосфатов и гликогена.
Как следует из таблицы, восстановление фосфагена (АТФ-КФ) завершается до уровня 50 процентов в течение первых 30 секунд восстановления, а полное восстановление происходит в пределах трех-пяти минут. Данный алгоритм объясняет, почему между подходами высокоинтенсивной тренировки с сопротивлением, например, при выполнении от четырех до восьми повторений упражнения с большим весом или при беге на 50 метров, спортсмену требуется отдых продолжительностью от трех до пяти минут. Например, во время тренировки бега на короткие дистанции, если перерыв для отдыха между забегами на 50 метров слишком короткий (к примеру, всего одна или две минуты), тренировка становится все более лактатной и превращается из тренировки на скорость в тренировку на устойчивость к лактату[1].
Если спортсмен начинает выполнение подхода без соответствующего восстановления уровня фосфатов, он не сможет поддерживать выработку энергии на протяжении данного или последующих подходов. Таким образом, на этапе тренировки максимальной силы перерыв для отдыха спортсменов перед выполнением последующих подходов с использованием одной и той же группы мышц должен составлять три-пять минут, если только спортсмен не работает с большим резервом. Для максимального восстановления при выполнении упражнений с очень высокой интенсивностью и небольшим резервом спортсменам следует применять вертикальную методику тренировки, т.е. переходить к новому упражнению по завершении подхода предыдущего упражнения. Иными словами, спортсмен выполняет по одному подходу для каждого упражнения перед тем, как вернуться к самому первому упражнению и выполнить второй подход. В результате использования данного алгоритма остаётся достаточный промежуток времени для восстановления уровня фосфатов в мышцах.
Продолжительность восстановления уровня АТФ-КФ
Время (мин) | % восстановления |
0,5 | 50 |
1 | 75 |
1,5 | 87,5 |
2 | 93,7 |
2,5 | 96,8 |
3 | 98,3 |
3,5 | 99 |
4 | 99,4 |
4,5 | 99,8 |
5 | 100 |
- ↑ Janssen, P. 2001. Lactate threshold training. Champaign, IL: Human Kinetics.
sportwiki.to