Ферментативная функция липидов – Функции липидов и их характеристика

Содержание

Функции липидов и их характеристика

Липиды выступают важнейшим источником энергетического запаса организма. Факт очевиден даже на номенклатурном уровне: греческое «липос» переводится как жир. Соответственно, категория липидов объединяет жироподобные вещества биологического происхождения. Функционал соединений достаточно разнообразен, что обусловлено неоднородностью состава данной категории био-объектов.

Какие функции выполняют липиды

Перечислите основные функции липидов в организме, которые являются основными. На ознакомительном этапе целесообразно выделить ключевые роли жироподобных веществ в клетках организма человека. Базовый перечень – это пять функций липидов:

  1. резервно-энергетическая;
  2. структурообразующая;
  3. транспортная;
  4. изолирующая;
  5. сигнальная.

К второстепенным задачам, которые липиды выполняют в сочетании с другими соединениями можно отнести регуляторную и ферментативную роль.

Энергетический запас организма

Это не только одна из важных, но приоритетная роль жироподобных соединений. По сути, часть липидов является.источником энергии всей клеточной массы. Действительно, жир для клеток – аналог топлива в баке автомобиля. Реализуется энергетическая функция липидами следующим образом. Жиры и подобные им вещества окисляются в митохондриях, расщепляясь до уровня воды и двуокиси углерода. Процесс сопровождается выделением значительного количества АТФ – высокоэнергетических метаболитов. Их запас позволяет клетке участвовать в энергозависимых реакциях.

Структурные блоки

Одновременно, липиды осуществляют строительную функцию: с их помощью формируется мембрана клетки. В процессе участвуют следующие группы жироподобных веществ:

  1. холестерин – липофильный спирт;
  2. гликолипиды – соединения липидов с углеводами;
  3. фосфолипиды – эфиры сложных спиртов и высших карбоновых кислот.

Следует отметить, что в сформировавшейся мембране, непосредственно жиры не содержатся. Образовавшаяся стенка между клеткой и внешней средой оказывается двухслойной. Это достигается вследствие бифильности. Подобная характеристика липидов указывает, что одна часть молекулы – гидрофобна, то есть нерастворима в воде, вторая, напротив – гидрофильна. Как результат, бислой клеточной стенки формируется вследствие упорядоченного расположения простых липидов. Молекулы разворачиваются гидрофобными участками друг к другу, тогда как гидрофильные хвосты направлены внутрь и вне клетки.

Это определяет защитные функции мембранных липидов. Во-первых, мембрана придает клетке форму и даже сохраняет ее. Во-вторых, двойная стенка – своеобразный пункт паспортного контроля, не пропускающий через себя нежелательных визитеров.

Автономная система отопления

Конечно, это наименование достаточно условно, но вполне применимо, если рассматривать какие функции выполняют липиды. Соединения не столько отапливают организм сколько удерживают тепло внутри. Подобная роль отведена жировым отложениям, формирующимся вокруг различных органов и в подкожной ткани. Этот класс липидов характеризуется высокими теплоизолирующими свойствами, что предохраняет жизненно-важные органы от переохлаждения.

«Золотой» запас индивидуума

Дополнительно, жировые отложения выполняют резервную функцию. Это фактически кладезь энергии, используемый организмом при необходимости, Как пример, голодание или интенсивные физические нагрузки. Весь механизм осуществляется при содействии адипоциты. Это специальные клетки, строение и функции которых тесно связаны с триглицеридами. Жир занимает подавляющий объем адипоцитов.

Такси заказывали?

Транспортную роль липидов относят к второстепенной функции. Действительно, перенос веществ (преимущественно триглицеридов и холестерина) осуществляется отдельными структурами. Это связанные комплексы липидов и белков, именуемые липопротеины. Как известно, жироподобные вещества нерастворимы в воде, соответственно плазме крови. Напротив, функции белков включают гидрофильность. Как результат, ядро липопротеида – скопление триглицеридов и эфиров холестерина, тогда как оболочка – смесь молекул протеина и свободного холестерола. В таком виде, липиды доставляются к тканям или обратно в печень для вывода из организма.

Второстепенные факторы

Список уже перечисленных 5 функций липидов, дополняет ряд не менее важных ролей:

  • ферментативная;
  • сигнальная;
  • регуляторная

Сигнальная функция

Некоторые сложные липиды, в частности их строение, позволяют передавать нервные импульсы между клетками. Посредником в подобном процесс выступают гликолипиды. Не менее важным оказывается способность распознавать внутриклеточные импульсы, также реализуемая жироподобными структурами. Это позволяет отбирать из крови необходимые клетке вещества.

Ферментативная функция

Липиды, независимо от расположения в мембране или вне ее – не входят в состав ферментов. Однако, их биоснтез происходит с присутствием жироподобных соединений. Дополнительно, липиды участвуют в выполнении защиты стенок кишечника от ферментов поджелудочной железы. Избыток последних нейтрализуется желчью, где в значительных количествах включены холестерин и фосфолипиды.

Регуляторная функция

Еще одна роль, которую для называют второстепенной. Не участвуя непосредственно в регулирующих процессах, липиды входят в состав соединений, осуществляющих подобные функции. В частности, это мембрана клетки, выполняющая пропускной режим. Другим примером выступают стероидные гормоны, регулирующие обмен веществ, репродуктивную способность, и иммунную защиту организма.

Перечень функций липидов не ограничивается рассмотренными случаями, но позволяет понять уровень важности веществ для человека.

sosudportal.ru

Липиды это вещества, необходимые для функционирования организма

Жироподобные вещества липиды это составляющие, принимающие участие в жизненно важных процессах в организме человека. Есть несколько групп, которые выполняют ведущие функции организма, такие как формирование гормонального фона или обмен веществ. В этой статье подробно расскажем, что это такое и какова роль в процессах жизнедеятельности.

Липиды и их значения

Липиды это органические соединение, куда входят жиры и другие жироподобные вещества. Они активно участвуют в процессе строения клеток и являются частью мембран. Влияют на пропускную способность клеточных мембран, а также на ферментную активность. Влияют на создание межклеточных связей и на разнообразные химические процессы в организме. Нерастворимы в воде, но они растворяются в растворителях органического происхождения (например, бензин или хлороформ). Кроме того, есть виды, которые растворяются в жирах.

Это вещество может быть растительного либо животного происхождения. Если речь о растениях, то больше всего их в орехах и семечках. Животного происхождения в основном расположены в подкожной ткани, нервной и мозговой.

Классификация липидов

Липиды присутствуют практически во всех тканях организма и в крови. Существует несколько классификаций ниже приводим наиболее распространённую, основанную на особенностях структуры и состава. По строению они подразделяются на 3 большие группы, которые подразделяются на меньшие.

Первая группа — простые. Они включают в состав кислород, водород и углерод. Делятся на такие виды:

  1. Жирные спирты. Вещества, включающие от 1 до 3 гидроксильных групп.
  2. Жирные кислоты. Находятся в разных маслах и жирах.
  3. Жирные альдегиды. В составе молекулы содержится 12 атомов углерода.
  4. Триглицериды. Это именно те жиры, которые находятся откладываются в подкожных тканях.
  5. Основания сфингозиновые. Располагаются в плазме, лёгких, печени и почках, встречаются в тканях нервных.
  6. Воски. Это эфиры жирных кислот и спиртов высокомолекулярных.
  7. Предельные углеводороды. Имеют исключительно одинарные связи, при этом атомы углерода в состоянии гибридизации.

Вторая группа — сложные. Они, как и простые, включают в состав кислород, водород и углерод. Но, кроме них также содержат разные дополнительные компоненты. В свою очередь, они подразделяются на 2 подгруппы: полярные и нейтральные.

К полярным относятся:

  1. Гликолипиды. Они появляются после соединения углеводов с липидами.
  2. Фосфолипиды. Это сложные эфиры жирных кислот, а также многоатомных спиртов.
  3. Сфинголипиды. Являются производными аминоспиртов алифатических.

К нейтральным относятся:

 

  1. Ацилглицериды. Включают в себя моноглицериды и диглицериды.
  2. N-ацетилэтаноламиды. Являют собой этаноламиды жирных кислот.
  3. Церамиды. В них входят жирные кислоты в сочетании с сфингозином.
  4. Эфиры стеринов. Представляют сложные циклические спирты высокомолекулярные. Они содержат жирные кислоты.

Третья группа — оксилипиды. Вещества появляются в результате оксегенирования полиненасыщенных жирных кислот. В свою очередь, подразделяются на 2 типа:

  1. Циклооксигеназного пути.
  2. Липоксигеназного пути.

Значение для мембранных клеток

увеличить

Клеточная мембрана — то, что отделяет клетку от среды вокруг. Кроме защиты, она выполняет довольно большое количество необходимых для нормальной жизнедеятельности функций. Значение липидов в мембране невозможно переоценить.

В клеточной стенке вещество формирует двойной слой. Это помогает клеткам нормально взаимодействовать с окружающей средой. Поэтому не возникает проблем с контролем и регулированием метаболизма. Липиды мембран поддерживают форму клетки.

Часть бактериальной клетки

Неотъемлемая часть строения клетки — липиды бактерий. Как правило, в составе воски либо фосфолипиды. А вот количество вещества непосредственно варьируется в пределах 5-40%. Зависит содержание от типа бактерии, например, в дифтерийной палочке содержится около 5%, а вот в туберкулёзном возбудителе уже более 30%.

Бактериальная клетка отличается тем, что вещества в ней связаны с другими составляющими, например, белками или полисахаридами. В бактериях они имеют гораздо больше разновидностей и выполняют много задач:

  • аккумуляция энергии;
  • участвуют в метаболических процессах;
  • являются составляющей мембран;
  • от них зависит устойчивость клетки к кислотам;
  • компоненты антигенов.

Какие функции выполняют в организме

Липиды составная часть почти всех тканей человеческого организма. Встречаются разные подвиды, каждый из которых отвечает за какую-то определённую функцию. Далее подробнее остановимся на том, какое значение вещества для жизнедеятельности:

  1. Энергетическая функция. Имеют свойство распадаться и в процессе появляется много энергии. Она нужна клеткам организма, чтобы поддерживать такие процессы, как поступление воздуха, формирование веществ, рост и дыхание.
  2. Резервная функция. В организме жиры откладываются про запас, именно из них состоит жировая прослойка кожи. Если наступает голод, то организм задействует эти резервы.
  3. Функция теплоизоляции. Жировая прослойка плохо проводит тепло, а потому организм гораздо легче поддерживать температуру.
  4. Структурная функция. Это относится к клеточным мембранам, потому что вещество является их постоянным компонентом.
  5. Ферментативная функция. Одна из второстепенных функций. Они помогают клетками формировать ферменты и помогают с усвоением некоторых микроэлементов, поступающих извне.
  6. Транспортная функция. Побочная и заключается в способности некоторых видов липидов переносить вещества.
  7. Сигнальная функция. Тоже является второстепенной и просто поддерживает некоторые процессы организма.
  8. Регуляторная функция. Это ещё один механизм, который имеет побочное значение. Сами по себе они почти не участвуют в регулировании разных процессов, но являются компонентом веществ, прямо влияющих на них.

Таким образом, можно с уверенностью утверждать, что функциональное значение липидов для организма переоценить сложно. Поэтому важно, чтобы их уровень всегда был в норме. Многие биологические и биохимические процессы в организме на них завязаны.

Что такое липидный обмен

Обмен липидов — это процессы физиологической или биохимической природы, которые происходят в клетках. Давайте остановимся на них подробнее:

  1. Обмен триациглицерола.
  2. Обмен фосфолипидов. Они распределяются неравномерно. Их много в печени и плазме (до 50%). Срок полупревращения 1-200 суток смотря какой вид.
  3. Обмен холестерола. Он образуется в печени и поступает с едой. Излишки выводятся естественным путём.
  4. Катаболизм жирных кислот. Происходит в ходе β-окисления, реже задействуются α-или ω-окисления.
  5. Входят в обменные процессы ЖКТ. А именно расщепление, переваривание и всасывание этих веществ, поступающих с едой. Переваривание начинается в желудке при помощи такого фермента, как липаза. Далее в кишечнике в действие вступает сок поджелудочной и жёлчь. Причиной появления сбоев может послужить нарушение секреции жёлчного пузыря или поджелудочной.
  6. Липогенез. Проще говоря — синтез жирных кислот. Происходит в печени или жировой ткани.
  7. Сюда входит транспортировка из кишечника разных жиров.
  8. Липолиз. Катаболизм, который происходит с участием липазы и провоцирует расщепление жиров.
  9. Синтез кетоновых тел. Ацетоацетил-КоА даёт начало их формированию.
  10. Взаимопревращение жирных кислот. Из жирных кислот, находящихся в печени, формируются кислоты, свойственные организму.

Липиды это важное вещество, влияющие почти на все сферы жизнедеятельности. Наиболее распространены в рационе человека триглицериды и холестерин. Триглицериды — отличный источник энергии, именно этот тип формирует жировую прослойку тела. Холестерин же влияет на обменные процессы организма, а также формирование гормонального фона. Важно чтобы содержание всегда находилось в пределах нормы, не превышая и не занижая её. Взрослому человеку необходимо употреблять 70-140 г липидов.

medkrovi.ru

Ферментативная функция липидов — Про холестерин

Хиломикроны

НАШИ ЧИТАТЕЛИ РЕКОМЕНДУЮТ!

Для снижения холестерина наши читатели успешно используют Aterol. Видя, такую популярность этого средства мы решили предложить его и вашему вниманию.
Подробнее здесь…

Хиломикроны являются самыми крупными среди липопротеинов, они могут достигать 1,2 мкм. Они образуются клетками кишечника для последующего переноса усвоенных пищевых жиров и холестерина в различные части организма. Благодаря своей структуре они способны транспортировать триглицериды и холестерин в кровеносную систему. В противном случае холестерин и триглицериды не могли бы присутствовать в крови, так как являются жирами и не могут раствориться в водном растворе, аналогом которого является кровь.

Функция

Основное поглощения питательных веществ из пищи происходит в кишечнике. Соответственно, перед организмом стоит задача переноса усвоенных жиров в другие части тела. Энтероциты кишечника перерабатывают жирные кислоты и моноглицериды в триглицериды и фосфолипиды. Абсорбированный холестерин этерифицируется в холестериновые эфиры. В нормальных условиях основная часть главных липидов, входящих в состав хиломикронов, является триглицеридами. Однако в случае еды, богатой холестерином, клетки кишечника производят частицы хиломикронов, в состав которых входит повышенное количество холестериновых эфиров.

Затем происходит включение триглицеридов и холестериновых эфиров в центральную часть хиломикронов. Далее хиломикроны попадают в лимфатическую систему, а затем через грудной лимфатический проток они проникают в кровеносную систему. Благодаря этому внепеченочные ткани (преимущественно мышечная и жировая ткань) первыми получают свежие хиломикроны. Если бы они секретировались напрямую в кровь, то они сначала бы попадали в печень через воротную вену.

Хиломикроны характеризуются следующим строением. В центральной части располагаются неполярные триглицериды и холестериновые эфиры. Их окружают амфипатические фосфолипиды и холестерин. Молекулы холестерина стабилизируются аполипопротеинами.

Особенности метаболизма

Особенности метаболизма хиломикронов характеризуется следующими особенностями:

  • Синтезируются исключительно клетками кишечника.
  • Являются своеобразной упаковкой пищевых жиров, их мало в крови людей, не принимавших пищу.
  • Обычно они более чем на 80% состоят из триглицеридов.
  • В норме они секретируются в лимфатическую систему, а не в кровь.
  • На поверхности капилляров в жировой и мышечной ткани на них воздействует липопротеинлипаза. Она разлагает триглицериды на свободные жирные кислоты и глицерин.
  • Свободные жирные кислоты подвергаются переэтерификации и запасаются в виде триглицеридов в жировой ткани или же подвергаются окислительному фосфорилированию в мышечной ткани.
  • Когда под воздействием липопротеинлипазы запас триглицеридов в составе хиломикронов истощается, остаточные формы хиломикронов выводятся из кровеносной системы при помощи печени.

Биохимия метаболизма

В норме физиологическая функция остаточных хиломикронов состоит в возвращении холестерина в печень посредством печёночно-кишечной рециркуляции. Холестерин, входящий в состав остаточного хиломикрона, выполняет различные функции в печени. После гидролиза холестерина остаточных хиломикронов лизосомальными ферментами он может спокойно проникать в гепатоциты. При этом существенная доля секретируются из печени в плазму липопротеинов очень низкой плотности. Далее остаточные триглицериды, присутствующие в остаточном хиломикроне после действия липопротеинлипазы, являются важным источником жирных кислот.

Остаточные хиломикроны являются частью экзогенного пути метаболизма липопротеинов. Однако эта концепция нуждается в уточнении. Дело в том, что основная часть холестерина, транспортируемого хиломикронами, проистекает из реабсорбции эндогенного холестерина.

Синтез аполипопротеина B в кишечнике имеет ключевое значение для формирования хиломикронов, а зрелая форма протеина apoB48 входит в состав структуры липоидных телец. ApoB48 играет важную роль в метаболизме. В процессе голодания кишечник продолжает секретировать мелкие частицы, содержащие apoB48. В норме при голодании у людей в плазме крови обнаруживается apoB48. Размер хиломикронов имеет достаточно умеренный эффект на темпы выведения.

Липопротеины и образование хиломикронов

Когда хиломикроны в ходе циркуляции крови проходят через капилляры тканей, на их триглицериды действует липопротеинлипаза. Поверхность этих липопротеинов состоит преимущественно из фосфолипидов, но в небольшом количестве присутствуют и триглицериды. Наиболее вероятно они являются местом воздействия липопротеинлипазы.  Выявлено несколько полиморфизмов липопротеинлипазы, некоторые из которых связаны с нарушением липидного состава крови и заболеванием коронарной артерии. Несмотря на крайнюю выраженность гипертриглицеридемии, полное отсутствие активности липопротеинлипазы не приводит к существенному ухудшению метаболизма хиломикронов.

В выведении хиломикронов из организма наибольшее значение имеет лиганд apoE. Текущие исследования показывают, что рецептор липопротеина низкой плотности участвует в выведении остаточных хиломикронов. Холестерин, составляющий лишь около 1% от массы липидов, играет ключевую роль в нормальной физиологии выведения хиломикронов. Без холестерина гидролиз триглицеридов может происходить, но остаточные частицы остаются в плазме.

Биохимия крови и состав липопротеинов

Вопросы взаимосвязи биохимии крови и состава липопротеинов во многих своих аспектах требуют дальнейших исследований. Хиломикроны являются одними из недостаточно исследованных липопротеинов. Отчасти это вызвано трудностями измерения их уровня в крови. Анализ биохимии крови и состава липопротеинов указывают на то, что сбои в выведении остаточных хиломикронов являются свидетельством более генерализованного дефекта в метаболизме липопротеинов.

Интерес к этим липопротеинам в последнее время увеличивается по мере того, как появляются дополнительные свидетельства об их участии в развитии атеросклероза. Многочисленные исследования связывают маркеры атеросклероза со сбоями в утилизации хиломикронов. Разработаны новые методы клинических измерений уровня этих липопротеинов, и был опубликован ряд интервенционных исследований, раскрывающих влияние лекарств, снижающих содержание липидов, на метаболизм хиломикронов. Было признано, что липидный состав липопротеинов регулировать их метаболизм.

Виды лейкоцитов крови и их функции

Лейкоциты – это группа форменных элементов крови, которые характеризуются отсутствием окраски, наличием ядра и способностью к передвижению. Название переводится с греческого как «белые клетки». Группа лейкоцитов неоднородна. В нее входят несколько разновидностей, которые отличаются по происхождению, развитию, внешнему виду, строению, размерам, форме ядра, функциям. Образуются лейкоциты в лимфатических узлах и костном мозге. Их основная задача – защита организма от внешних и внутренних «врагов». Находятся лейкоциты в крови и в различных органах и тканях: в миндалинах, в кишечнике, в селезенке, в печени, в легких, под кожей и слизистыми. Они могут мигрировать во все части организма.

Виды лейкоцитов

Белые клетки делятся на две группы:

  • Зернистые лейкоциты – гранулоциты. Они содержат крупные ядра неправильной формы, состоящие из сегментов, которых тем больше, чем старше гранулоцит. К этой группе относятся нейтрофилы, базофилы и эозинофилы, которые различают по восприятию ими красителей. Гранулоциты – это полиморфноядерные лейкоциты. Более подробно о гранулоцитах можно узнать из этой статьи.
  • Незернистые – агранулоциты. К ним относятся лимфоциты и моноциты, содержащие одно простое ядро овальной формы и не имеющие характерной зернистости.

Где образуются и сколько живут?

Основная часть белых клеток, а именно гранулоциты, производится красным костным мозгом из стволовых клеток. Из материнской (стволовой) образуется клетка-предшественница, затем переходит в лейкопоэтиночувствительную, которая под действием специфического гормона развивается по лейкоцитарному (белому) ряду: миелобласты – промиелоциты – миелоциты – метамиелоциты (юные формы) – палочкоядерные – сегментоядерные. Незрелые формы находятся в костном мозге, созревшие поступают в кровяное русло. Гранулоциты живут примерно 10 суток.

В лимфатических узлах вырабатываются лимфоциты и значительная часть моноцитов. Часть агранулоцитов из лимфатической системы поступает в кровь, которая их переносит к органам. Лимфоциты живут долго – от нескольких дней и до нескольких месяцев и лет. Срок жизни моноцитов – от нескольких часов до 2-4 дней.

Строение

Строение лейкоцитов разных видов отличается, и выглядят они по-разному. Общее для всех – это наличие ядра и отсутствие собственной окраски. Цитоплазма может быть зернистой или однородной.

Нейтрофилы

Нейтрофилы – полиморфноядерные лейкоциты. Они имеют круглую форму, их диаметр составляет около 12 мкм. В цитоплазме находится два вида гранул: первичные (азурофильные) и вторичные (специфические). Специфические мелкие, более светлые и составляют около 85 % от всех гранул, имеют в составе бактерицидные вещества, белок лактофферин. Аузорофильные крупнее, их содержится порядка 15 %, в них присутствуют ферменты, миелопероксидаза. В специальном красителе гранулы окрашиваются в сиреневый цвет, а цитоплазма – в розовый. Зернистость мелкая, состоит из гликогена, липидов, аминокислот, РНК, ферментов, за счет которых происходит расщепление и синтез веществ. У юных форм ядро бывает бобовидным, у палочкоядерных – в виде палочки или подковы. У зрелых клеток – сегментоядерных – оно имеет перетяжки и выглядит разделенным на сегменты, которых может быть от 3 до 5. В ядре, которое может иметь отростки (придатки) содержится много хроматина.

Эозинофилы

Эти гранулоциты достигают в диаметре 12 мкм, имеют мономорфную крупную зернистость. В цитоплазме содержатся гранулы овальной и сферической формы. Зернистость окрашивается кислыми красителями в розовый цвет, цитоплазма становится голубой. Присутствуют гранулы двух видов: первичные (азурофильные) и вторичные, или специфические, заполняющие почти всю цитоплазму. В центре гранул содержится кристаллоид, в котором находится основной белок, ферменты, пероксидаза, гистаминаза, эозинофильный катионный белок, фосфолипаза, цинк, коллагеназа, катепсин. Ядро эозинофилов состоит из двух сегментов.

Базофилы

Эта разновидность лейкоцитов с полиморфной зернистостью имеет размеры от 8 до 10 мкм. Гранулы разных размеров окрашиваются основным красителем в темный сине-фиолетовый цвет, цитоплазма – в розовый. Зернистость содержит гликоген, РНК, гистамин, гепарин, ферменты. В цитоплазме находятся органеллы: рибосомы, эндоплазматическая сеть, гликоген, митохондрии, аппарат Гольджи. Ядро чаще всего состоит из двух сегментов.

Лимфоциты

По размеру их можно разделить на три вида: крупные (от 15 до 18 мкм), средние (около 13 мкм), мелкие (6-9 мкм). Последних в крови больше всего. По форме лимфоциты овальные или круглые. Ядро крупное, занимает практически всю клетку и окрашивается в синий цвет. В небольшом количестве цитоплазмы содержится РНК, гликоген, ферменты, нуклеиновые кислоты, аденозинтрифосфат.

Моноциты

Это самые большие по размеру белые клетки, которые могут достигать в диаметре 20 мкм и более. В цитоплазме содержатся вакуоли, лизосомы, полирибосомы, рибосомы, митохондрии, аппарат Гольджи. Ядро моноцитов крупное, неправильной, бобовидной или овальной формы, может иметь выпуклости и вмятины, окрашивается в красновато-фиолетовый. Цитоплазма приобретает под воздействием красителя серо-голубой или серо-синий цвет. В ней содержатся ферменты, сахариды, РНК.

Содержание

Лейкоциты в крови здоровых мужчин и женщин содержатся в следующем соотношении:

  • нейтрофилы сегментоядерные – от 47 до 72%;
  • нейтрофилы палочкоядерные – от 1 до 6%;
  • эозинофилы – от 1 до 4%;
  • базофилы – около 0,5%;
  • лимфоциты – от 19 до 37%;
  • моноциты – от 3 до 11%.

О содержании лейкоцитов у беременных можно узнать из этой статьи.

Абсолютный уровень лейкоцитов в крови у мужчин и женщин в норме имеет следующие значения:

  • нейтрофилы палочкоядерные – 0,04-0,3Х10⁹ на литр;
  • нейтрофилы сегментоядерные – 2-5,5Х10⁹ на литр;
  • нейтрофилы юные – отсутствуют;
  • базофилы – 0,065Х10⁹ на литр;
  • эозинофилы – 0,02-0,3Х10⁹ на литр;
  • лимфоциты – 1,2-3Х10⁹ на литр;
  • моноциты – 0,09-0,6Х10⁹ на литр.

О количестве лейкоцитов крови у детей можно почитать здесь.

Функции

Общие функции лейкоцитов следующие:

  1. Защитная – заключается в формировании иммунитета специфического и неспецифического. Основной механизм – фагоцитоз (захват клеткой патогенного микроорганизма и лишение его жизни).
  2. Транспортная – заключается в способности белых клеток адсорбировать аминокислоты, ферменты и другие вещества, находящиеся в плазме, и переносить их в нужные места.
  3. Гемостатическая – участвуют в свертывании крови.
  4. Санитарная – способность с помощью содержащихся в лейкоцитах ферментов рассасывать ткани, погибшие при травмах.
  5. Синтетическая – способность некоторых белков синтезировать биоактивные вещества (гепарин, гистамин и другие).

Каждому виду лейкоцитов отводятся свои функции, в том числе специфические.

Нейтрофилы

Главная роль – защита организма от инфекционных агентов. Эти клетки захватывают бактерии в свою цитоплазму и переваривают. Кроме этого, они могут вырабатывать противомикробные вещества. При проникновении инфекции в организм они устремляются к месту внедрения, накапливаются там в большом количестве, поглощают микроорганизмы и погибают сами, превращаясь в гной.

Эозинофилы

При заражении глистами эти клетки проникают в кишечник, разрушаются и выделяют токсические вещества, убивающие гельминтов. При аллергиях эозинофилы удаляют избыточный гистамин.

Базофилы

Эти лейкоциты принимают участие в формировании всех аллергических реакций. Их называют скорой помощью при укусах ядовитых насекомых и змей.

Лимфоциты

Они постоянно патрулируют организм с целью обнаружения чужеродных микроорганизмов и вышедших из-под контроля клеток собственного организма, которые могут мутировать, затем быстро делиться и образовывать опухоли. Среди них есть информаторы – макрофаги, которые постоянно перемещаются по организму, собирают подозрительные объекты и доставляют их лимфоцитам. Лимфоциты делятся на три вида:

  • Т-лимфоциты отвечают за клеточный иммунитет, вступают в контакт с вредными агентами и уничтожают их;
  • В-лимфоциты определяют чужеродные микроорганизмы и вырабатывают против них антитела;
  • NK-клетки. Это настоящие киллеры, которые поддерживают в норме клеточный состав. Их функция – распознавать дефектные и раковые клетки и уничтожать их.

Как подсчитывают

Уровень белых клеток (WBC) определяют во время проведения клинического анализа крови. Подсчет лейкоцитов осуществляется автоматическими счетчиками или в камере Горяева – оптического прибора, названного в честь его разработчика – профессора Казанского университета. Этот прибор отличается высокой точностью. Состоит из толстого стекла с углублением прямоугольной формы (собственно камерой), где нанесена микроскопическая сетка, и тонкого покровного стекла.

Подсчет происходит следующим образом:

  1. Уксусную кислоту (3-5%) подкрашивают метиленовой синью и наливают в пробирку. В капиллярную пипетку набирают кровь и осторожно добавляют ее в приготовленный реактив, после чего как следует перемешивают.
  2. Покровное стекло и камеру вытирают насухо марлей. Покровное стекло притирают к камере, чтобы появились цветные кольца, заполняют камеру кровью и ждут в течение минуты, пока не остановится движение клеток. Подсчитывают количество лейкоцитов в ста больших квадратах. Рассчитывают по формуле X = (a х 250 х 20): 100, где «a» – количество лейкоцитов в 100 квадратах камеры, «х» – количество лейкоцитов в одном мкл крови. Полученный по формуле результат умножают на 50.

Заключение

Лейкоциты – разнородная группа элементов крови, которые осуществляют защиту организма от внешних и внутренних заболеваний. Каждый вид белых клеток выполняет определенную функцию, поэтому важно, чтобы их содержание соответствовало норме. Любые отклонения могут указывать на развитие болезней. Анализ крови на лейкоциты позволяет на ранних этапах заподозрить патологию, даже если отсутствует симптоматика. Это способствует своевременной диагностике и дает больше шансов на выздоровление.

О чем говорит повышенный уровень альфа амилаза

Процессы расщепления попадающих в организм питательных веществ невозможны без участия ферментов, одним из которых является альфа-амилаза. Синтезируется этот фермент непосредственно поджелудочной железой, поэтому его уровень может свидетельствовать о множестве заболеваний желудочно-кишечного тракта. Когда используется подобный анализ, что он позволяет выявить, и как бороться с отклонениями от норм, узнаем далее.

Виды и роль в организме

Главная биологическая функция амилазы – это расщепление сложных углеводов на более простые соединения, такие как крахмал и гликоген. Это помогает сделать процесс пищеварения более эффективным, позволяя усваивать больше полезных компонентов.

Поджелудочная железа относится к железам смешанной секреции, способной вырабатывать амилазу не только в желудочно-кишечный тракт, но и в небольших количествах в кровь. Разделяют два вида фермента:

  • амилаза слюны – синтезируется в малых количествах в ротовой полости при помощи слюнных желез;, позволяет производить первичное переваривание в ротовой полости, стимулируя выработку желудочного сока;
  • панкреатическая амилаза – вырабатывается в поджелудочной железе, позволяя облегчить работу кишечнику, путем расщепления сложных компонентов пищи на более простые.

Значение показателя фермента позволяет диагностировать большинство болезней желудочно-кишечного тракта, которые не имеют ярко выраженных симптомов.

Каким анализом определяется?

Для того, чтобы определить уровень амилазы достаточно сдать обычный биохимический анализ крови. Эффективность фермента достигается исключительно в пищеварительном тракте, поэтому в крови он содержаться в таких количествах не должен. Если же анализ крови показывает присутствие альфа-амилазы в крови в больших количествах, это может свидетельствовать о серьезных проблемах со здоровьем.

При подозрении на наличие острых заболеваний поджелудочной железы и желудка может быть дополнительно произведен анализ на наличие амилазы в моче. Это исследование более точно отображает состояние желудочно-кишечного тракта, поскольку в моче концентрация амилазы будет иметь предельно точные количества. Панкреатическая амилаза, при нарушении работы ЖКТ, попадает не только в кровь, но и концентрируется в моче. При этом ее повышенная концентрация длительное время может не проявлять себя клиническими признаками.

Подготовка к анализу

Забор крови осуществляют из вены, при этом нужно придерживаться следующих рекомендаций:

  • сдавать кровь на голодный желудок;
  • накануне не употреблять жирной и жареной пищи;
  • избегать сладких газированных напитков за 3 дня до проведения исследования;
  • ограничить физические нагрузки, а также сократить уровень стресса.

Все эти показатели значительно влияют на результативность исследования, поэтому их нужно обязательно учитывать. При необходимости постоянного употребления различных медикаментозных препаратов нужно обязательно предупредить медработника, чтобы в процессе проведения анализа избежать возможных неточностей и погрешностей.

В каких случаях назначают исследование?

Главным показанием к назначению исследования являются жалобы пациента на боли в желудочно-кишечном тракте, которые сопровождаются отсутствием аппетита, расстройствами стула, а также резкой потерей массы тела. Анализ могут также назначить при подозрении на острый панкреатит или холецистит, когда повышенная амилаза выявляется в моче.

Значения нормы

Норма показателей для разных видов амилазы отличен, и зависит от возраста обследуемого пациента:

  1. Альфа-амилаза – это общее количество всей синтезируемой амилазы, вырабатываемой как слюнными железами, так и поджелудочной железой. В детском возрасте ее норма составляет 5 – 60 Ед/л. С увеличением массы тела и изменением питания в зрелом возрасте норма альфа-амилазы варьируется в рамках 23-120 Ед/л. В возрасте старше 60 лет продуцируемый фермент может вырабатываться в рамках 21 – 165 Ед/л.
  2. Панкреатическая амилаза – ее уровень показывает работоспособность пищеварительной системы. Новорожденные дети до 6 месяцев в норме имеют показатель фермента <8 Ед/мл. До года показатели стремительно увеличиваются <23 Ед/мл. Панкреатическая амилаза после первого года жизни вырабатывается <50 Ед/мл.

Стоит отметить, что данные показатели могут быть субъективными и относится исключительно к определенным лабораториям. При получении результата исследования пациенту обычно выдают распечатанную таблицу, в которой детально расписаны такие показатели, как:

  • показатели нормы – устанавливаются в зависимости от особенностей реактивов и количества обследуемой крови;
  • имеющиеся показатели в крови – данные, получаемые при анализе;
  • уровень отклонения от нормы;
  • о наличии каких заболеваний могут свидетельствовать подобные отклонения.

Причины повышения

В том случае, когда анализ показал значительное превышение содержания амилазы, это может свидетельствовать о наличии таких заболеваний, как:

НАШИ ЧИТАТЕЛИ РЕКОМЕНДУЮТ!

Для снижения холестерина наши читатели успешно используют Aterol. Видя, такую популярность этого средства мы решили предложить его и вашему вниманию.
Подробнее здесь…

  1. Воспалительный процесс в слюнных железах – всем известная «свинка», имеющая научное название паротит, провоцирует стимуляцию чрезмерной выработки слюнной амилазы. Панкреатическая амилаза в данном случае находится в рамках нормы. Повышенная амилаза имеет массу внешних проявлений.
  2. Острый панкреатит – повышенная амилаза достигается за счет застойных процессов в желчных протоках, которые стимулируют чрезмерную выработку фермента. При этом увеличивается проницаемость крупных сосудов, позволяя амилазе беспрепятственно поступать в кровь. Также фермент концентрируется в моче, где его количество достигает 65-75% от общего количества амилазы.
  3. Сахарный диабет – при этом заболевании отмечается дисбаланс выработки амилазы, что влияет на все обменные процессы в организме. Исследование показывает, что амилаза в крови значительно повышена, а в моче ее количество колеблется в рамках общепринятого.
  4. Онкологические новообразования поджелудочной железы – характеризуются резким увеличением альфа-амилазы в крови и моче, динамика которых крайне стремительна и опасна для жизни.
  5. Перитонит – когда в кишечнике происходят различные воспалительные процессы, ферментативная функция увеличивается. Это естественный процесс, поэтому увеличение показателей этого фермента, в сочетании с затяжной диареей и повышением температуры, могут свидетельствовать о наличии этого заболевания.
  6. Внематочная беременность – прикрепление эмбриона к стенке маточных труб также приводит к увеличению концентрации фермента, преимущественно в крови.

Благодаря подобному анализу появляется возможность быстро определить состояние работы желудочно-кишечного тракта на микробиологическом уровне.

Лечение повышенного уровня

Дисбаланс ферментов поджелудочной железы говорит о наличии заболеваний органов желудочно-кишечного тракта. Поэтому лечить нужно не отклонения амилазы от нормы, а их причину – заболевания. Медикаментозная терапия производится только в стационарных условиях, после проведения детального обследования и постановки точного диагноза.

Сократить выработку фермента поможет диета, которая имеет свои особенности. Нужно исключить следующие категории продуктов:

  • копченых продуктов – мясо, сало, колбаса, рыба;
  • соленых продуктов – солений, рыбы и таранки;
  • жирной и жареной пищи;
  • острые приправы и специи.

Соблюдение диеты позволяет снять нагрузку на поджелудочную железу. Чем проще продукты, тем легче их переварить и усвоить.

Помимо соблюдения диеты нужно отказаться от курения и крепких алкогольных напитков, которые также провоцируют усиленное выделение амилазы.

Низкий уровень

Не только повышенная амилаза говорит о проблемах со здоровьем. Причины низкого уровня фермента могут быть следующими:

  • наличие хронических заболеваний органов ЖКТ, при которых отмечается ферментативная недостаточность;
  • опухоли поджелудочной железы, которые блокируют нервные рецепторы, обеспечивающие выработку гормона в нужном количестве;
  • наследственное заболевание муковисцидоз.

Эти причины – лишь верхушка айсберга.

Иногда пониженный уровень свидетельствует о заболеваниях, вовсе не связанных с болезнями органов ЖКТ (аутоимунные растройства).

Профилактика

Дисбаланс амилазы и отклонения от нормы можно избежать, если соблюдать три главных правила:

  • правильно питаться;
  • вести здоровый образ жизни с наличием спорта;
  • отказаться от спиртного и курения.

Принципы всем известны и могут быть присвоены профилактике множества заболеваний, но именно их соблюдение никогда не заставит беспокоиться о состоянии собственного здоровья.

Таким образом, альфа-амилаза выполняет ключевую роль в процессе ферментации и переваривания продуктов в желудке и кишечнике. Ее дисбаланс говорит о множестве заболеваний, диагностирование и лечение которых должно быть своевременным.

krov.holesterin-lechenie.ru

Функции липидов:

Липиды принимают участие в выполнении следующий функций:

1. Структурная или пластическая роль липидов состоит в том, что они входят в состав структурных компонентов клетки (фосфо- и гликолипиды), ядра, цитоплазмы, мембраны и в значительной степени определяют их свойства (в нервной ткани содержится до 25% , в клеточных мембранах до 40% жиров).

2. Энергетическая функция – обеспечивает 25—30% всей энергии необходимой организму (при расщеплении 1г жира образуется 38,9 кДж.). У взрослой женщины доля жировой ткани в организме составляет в среднем 20—25% массы тела, что почти вдовое больше, чем у мужчины (соответственно 12— 14%). Следует полагать, что жир выполняет в женском организме еще и специфические функции. В частности, жировая ткань обеспечивает женщине резерв энергии, необходимый для вынашивания плода и грудного вскармливания.

3. Жиры являются источником образования эндогенной воды. При окислении 100 г жира выделяется 107 мл Н2О.

4. Функция запасания питательных веществ (жировое депо). Жиры являются своего рода «энергетическими консервами».

5.Защитная. Жиры защищают органы от повреждений (подушка около глаз, околопочечная капсула).

6. Выполняют транспортную функцию – носители жирорастворимых витаминов.

7. Терморегуляционная. Жиры предохраняют организм от потери тепла.

8. Жиры являются источником синтеза стероидных гормонов.

9. Участвуют в синтезе тромбопластина и миелина нервной ткани, желчных кислот, простагландинов и витамина D.

10. Существуют данные о том, что часть мужских половых стероидных гормонов в жировой ткани преобразуется в женские гормоны, что является основой косвенного участия жировой ткани в гуморальной регуляции функций организма.

Метаболизм жиров в организме.

Нейтральные жиры являются важнейшим источником энергии. За счет окисления образуется 50% всей энергии необходимой организму. Нейтральные жиры, составляющие основную массу животной пищи и липидов организма (10—20% массы тела), являются источником эндо­генной воды. Физиологическое депонирование нейтральных жиров выполняют липоциты, накапливая их в подкожной жировой клетчатке, сальнике, жировых капсулах различных органов – увеличиваясь в объеме. Считают, что количество жировых клеток закладывается в детском возрасте и в дальнейшем может лишь увеличиваться в размерах. Жиры, депонированные в подкожной клетчатке, предохраняют организм от потерь тепла, а окружающие внутренние органы – от механических повреждений. Жир может депонироваться в печени и мышцах. Количество жира отложенного в депо зависит от характера питания, особенностей конституции, пола, возраста, вида деятельности, образа жизни и т.д.

Фосфо- и гликолипиды входят в состав всех клеток (клеточные липиды), особенно нервных. Этот вид жиров – непременный компонент биологических мембран. Фосфолипиды синтезируются в печени и в кишечной стенке, однако только гепатоциты способны выделять их в кровь. Поэтому печень является единственным органом, определяющим уровень фосфолипидов крови.

Бурый жир представлен особой жировой тканью, располагающейся у новорожденных и грудных детей в области шеи и верхней части спины (его количество в организме 1—2% от общей массы тела). В небольшом количестве (0,1—0,2% от общей массы тела) бурый жир имеется и у взрослого человека. Особенностью состава бурого жира является огромное количество митохондрий с красновато-бурыми пигментами в которых происходят интенсивные процессы окисления, не сопряженные с образованием АТФ. Важнейшую роль в механизмах этого явления играет белок термогенин, составляющий 10—15% общего белка митохондрий бурого жира. Продукция тепла бурым жиром (на единицу массы его ткани) в 20 и более раз превышает таковую обычной жировой ткани.

У новорожденных низкая функциональная активность организма и незрелость центральных и периферических механизмов терморегуляции не обеспечивают достаточную теплопродукцию, поэтому функцию дополнительного специфического генератора тепла выполняет бурый жир. У взрослых же необходимость в дополнительном источнике тепла отпадает, так как теплопродукция обеспечивается иными, более совершенными, механизмами.

Следует отметить, что бурый жир является также источником эндогенной воды.

Высшие жирные кислоты являются основным продуктом гидролиза липидов в кишечнике. Всасывание их в кровь происходит в виде мицелярных комплексов, состоящих из жирных и желчных кислот, фосфолипидов и холестерола.

Для нормальной жизнедеятельности необходимо присутствие в пище незаменимых жирных кислот, которые не синтезируются в организме. К таким кислотам относятся олеиновая, линолевая, линоленовая и арахидоновая. Суточная потребность в них составляет 10—12 г. Линолевая и линоленовая кислоты содержатся в основном в растительных жирах, арахидоновая – только в животных. Дефицит незаменимых жирных кислот в пище приводит к замедлению роста и развития организма, снижению репродуктивной функции и различным поражениям кожи. Полиненасыщенные жирные кислоты необходимы для построения и сохранения липопротеидных клеточных мембран, для синтеза простагландинов и половых гормонов.

Жиры могут образовываться в организме из углеводов и белков при их избыточном поступлении извне. Значительное количество жиров человек получает с колбасами – от 2040%, салом – 90% , сливочным маслом – 7282% , сырами – 1550%, сметаной – 2030%.

В среднем человеку требуется 70—125 г жира в сутки, из которого 70% животного, а 30% растительного. Лишний жир откладывается в организме в определенных частях тела в виде жирового депо.

Холестерол относится к классу стеринов, включающему также стероидные гормоны, витамин D и желчные кислоты. Холестерол, поступает в организм с пищей и синтезируется в самом организме. При этом значительная его часть синтезируется в печени, где происходит и его расщепление на желчные кислоты, выделяемых в составе желчи в кишечник. Транспорт холестерола в крови осуществляется в составе липопротеидов высокой, низкой и очень низкой плотности.

Повышение фракции липопротеидов низкой плотности несет опасность развития атеросклероза вследствие их накопления в сосудистой стенке. Липопротеиды высокой плотности, напротив, способствуют удалению холестерола из клеток,

Суммарное количество жиров в организме человека составляет 1020% массы тела. Увеличение массы тела на 2025% считается предельно допустимой физиологической границей. Более чем у 30% населения экономически развитых стран масса тела превышает нормальные показатели.

studfiles.net

Функции липидов и их роль в организме человека

Липиды относят к обширной группе органических соединений, которая включает все жироподобные составляющие. Функции липидов достаточно многозадачные. Эти вещества могут быть малорастворимыми или нерастворимыми в воде, но они хорошо растворяются в горючих жидкостях и растворителях. Основная масса липидов, известных научной медицине состоит из кислот с высокой молекулярностью и спирта глицерина.

Сложные и простые вещества

По своему строению вещества такого рода могут быть простыми и сложными. Простые элементы имеют в своем составе остаточные вещества жирных кислот и спирта, именно к этой группе относят жиры. Элементы, вмещающие молекулы других компонентов (белков и углеводов) относят к группам сложных компонентов.

Вещества выступают источниками энергии, потому что в процессе их растворения человек получает энергии в 2 раза больше, нежели при потреблении глюкозы. Такие составляющие обеспечивают выполнение защитных функций организма всех млекопитающих, а также обеспечивает протекцию от переохлаждения. Вещества входят в состав клеточных мембран и обеспечивают выполнение структурных функций. Именно эти компоненты принимают участие в процессах выработки основных гормонов, потому недостаток данных концентраций может плохо сказаться на общем самочувствии пациента.

Липиды в большой концентрации содержатся в клетках жировой ткани у животных. В достаточных количествах содержится в некоторых семенах. Источником полезных липидов выступает авокадо.

 

Особенности строения

Липиды относят к классу жироподобных органических соединений. Они не растворяются в воде, но хорошо распадаются в неполярных растворителях. Группу относят к простым биологическим молекулам.

К данной группе относят:

  1. Фосфолипиды – соединения, имеющие полярные головки и неполярные хвосты. Стоит заметить, что отличительной особенности этих компонентов является способность растворяться в воде. Нужно заметить, что неполярные группы не растворяются в воде. Именно за счет подобной особенности обеспечивается основная роль в создании биологических мембран. Являют собой структурный компонент клеточных мембран, выполняют функцию регулятора. По структуре имеют некоторые сходства с жирами, но одна или две молекулы замещаются остатком фосфорной кислоты.
  2. Воска относят к сложным эфирам длинноцепочечных. Представляют собой высококалорийный клеточный источник энергии. Интересен тот, факт, что именно благодаря этому веществу водоплавающие птицы удерживаются на воде, а листья растений имеют некоторое защитное покрытие. Элемент относят к трудно растворимым в воде. К классу восков относят холестерол, половые гормоны мужчин и женщин, а также необходимый витамин Д.
  3. Терпены. Являются производными липидов, широко распространены в природе. Содержатся в эфирных маслах и представляют собой моноциклические и бициклические производные, содержат кислород, чем и обусловлено название терпеноиды.
  4. Липопротеиды. Содержаться в человеческом организме и не имеют ковалентных связей с липидами. В организме человека преобладают липопротеиды высокой плотности (в норме более 70%).Вещество синтезируется печенью и принимает участие во многих физических процессах, обеспечивающих нормальное функционирование организма. Липопротеиды низкой и очень низкой плотности человек потребляет вместе с продуктами питания животного происхождения (концентрация подобных веществ в организме человека не должна превышать 20% от общего содержания липопротеидов). Дисбаланс подобных компонентов влечет за собой необратимые процессы.
  5. За счет гликолипидов определяется видовая специфичность особей. Компоненты выполняют различные функции и отвечают за рецепцию биологически активных веществ. Соединение представляет собой углеводные остатки, построено из сфингозина и остатков жирной кислоты. Содержится компонент во всех тканях, преимущественно в наружном слое плазматических мембран.

Функции жиров липиды выполняют в полном объеме. В первую очередь такого рода составляющие обеспечивают энергетическую активность человека и представляют собой неотъемлемый компонент, которой обязательно должен присутствовать в крови человека.

Основные функции

Функции липидов достаточно разнообразны. Эти вещества представляют собой необходимые компоненты, которые обязательно должны присутствовать в организме человека. Такие вещества пациент может получать вместе с продуктами питания, но для этого нужно рационализировать собственное меню.

Какие функции выполняют липиды и зачем они необходимы человеку? Среди перечня основных возможностей элементов такого характера выделяют:

  1. Строительная или структурная функция. Липидов в клетке содержится достаточное количество, они обеспечивают функции структурных компонентов.
  2. Представляют собой источник энергии. Компоненты обеспечивают около 30% энергии, необходимой человеку для нормальной активности. Жировая прослой как в человеческом организме выполняет особенную роль. Она необходима женщинам и представляет собой источник дополнительной энергии в период вынашивания плода и в момент лактации.
  3. Выступают в качестве источника эндогенной воды.
  4. Обеспечивают протекцию некоторых органов от ненамеренных повреждений.
  5. Осуществляют транспорт жирорастворимых витаминов.
  6. Предотвращают излишнюю потерю тепла.
  7. Выступают источниками гормонов, принимают участие в процессах их продуцирования.
  8. Обеспечивают синтез необходимого витамина Д.
  9. Принимают участие в обеспечении гуморальной регуляции.

Основные функции липидов направлены на поддержание активности и жизнеспособности организма человека. Некоторые компоненты усиливают процессы биосинтеза и обеспечивают поддержку баланса некоторых ферментов.

medkrovi.ru

1 Биологические функции липидов

19

ЛИПИДЫ

ЛИПИДЫ — это разнородная группа природных соединений, полностью или почти полностью нерастворимых в воде, но растворимых в органических растворителях и друг в друге, дающих при гидролизе высокомолекулярные жирные кислоты.

В живом организме липиды выполняют разнообразные функции.

Биологические функции липидов:

1) Структурная

Структурные липиды образуют сложные комплексы с белками и углеводами, из которых построены мембраны клетки и кле­точных структур, участвуют в разнообразных процессах, протекаю­щих в клетке.

2) Запасная (энергетическая)

Запасные липиды (в основном жиры) являются энергетическим резервом организма и участвуют в обменных процессах. В растениях они накапливаются главным образом в плодах и семенах, у животных и рыб — в подкожных жировых тканях и тканях, окру­жающих внутренние органы, а также печени, мозговой и нервной тка­нях. Содержание их зависит от многих факторов (вида, возраста, питания и т. д.) и в отдельных случаях составляет 95—97% всех вы­деляемых липидов.

Калорийность углеводов и белков: ~ 4 ккал/грамм.

Калорийность жира: ~ 9 ккал/грамм.

Преимуществом жира как энергетического резерва, в отличие от углеводов, является гидрофобность – он не связан с водой. Это обеспечивает компактность жировых запасов — они хранятся в безводной форме, занимая малый объем. В среднем, у человека запас чистых триацилглицеринов составляет примерно 13 кг. Этих запасов могло бы хватить на 40 дней голодания в условиях умеренной физической нагрузки. Для сравнения: общие запасы гликогена в организме – примерно 400 гр.; при голодании этого количества не хватает даже на одни сутки.

3) Защитная

Подкожные жировые ткани предо­храняют животных от охлаждения, а внутренние органы — от меха­нических повреждений.

Образование запасов жира в организме человека и некоторых животных рассматривается как приспособление к нерегулярному питанию и к обитанию в холодной среде. Особенно большой запас жира у животных, впадающих в длительную спячку (медведи, сурки) и приспособленных к обитанию в условиях холода (моржи, тюлени). У плода жир практически отсутствует, и появляется только перед рождением.

Особую группу по своим функциям в живом организме составляют защитные липиды растений — воски и их производные, покрывающие поверхность листьев, семян и плодов.

4) Важный компонент пищевого сырья

Липиды являются важным компонентом пищи, во многом опреде­ляя ее пищевую ценность и вкусовое достоинство. Исключительно велика роль липидов в разнообразных процессах пищевой техноло­гии. Порча зерна и продуктов его переработки при хранении (прогоркание) в первую очередь связана с изменением его липидного комп­лекса. Липиды, выделенные из ряда растений и животных, — основное сырье для получения важнейших пищевых и технических про­дуктов (растительного масла, животных жиров, в том числе сливоч­ного масла, маргарина, глицерина, жирных кислот и др.).

2 Классификация липидов

Общепринятой классификации липидов не существует.

Наибо­лее целесообразно классифицировать липиды в зависимости от их хи­мической природы, биологических функций, а также по отношению к некоторым реагентам, например, к щелочам.

По химическому составу липиды обычно делят на две группы: простые и сложные.

Простые липиды – сложные эфиры жирных кислот и спиртов. К ним относятся жиры, воски и стероиды.

Жиры – эфиры глицерина и высших жирных кислот.

Воски – эфиры высших спиртов алифатического ряда (с длинной углеводной цепью 16-30 атомов С) и высших жирных кислот.

Стероиды – эфиры полициклических спиртов и высших жирных кислот.

Сложные липиды – помимо жирных кислот и спиртов содержат другие компоненты различной химической природы. К ним относятся фосфолипиды и гликолипиды.

Фосфолипиды – это сложные липиды, в которых одна из спиртовых групп связана не с ЖК, а с фосфорной кислотой (фосфорная кислота может быть соединена с дополнительным соединением). В зависимости от того, какой спирт входит в состав фосфолипидов, они подразделяются на глицерофосфолипиды (содержат спирт глицерин) и сфингофосфолипиды (содержат спирт сфингозин).

Гликолипиды – это сложные липиды, в которых одна из спиртовых групп связана не с ЖК, а с углеводным компонентом. В зависимости от того, какой углеводный компонент входит в состав гликолипидов, они подразделяются на цереброзиды (в качестве углеводного компонента содержат какой-либо моносахарид, дисахарид или небольшой нейтральный гомоолигосахарид) и ганглиозиды (в качестве углеводного компонента содержат кислый гетероолигосахарид).

Иногда в самостоятельную группу липидов (минорные липиды) выделяют жирораство­римые пигменты, стерины, жирорастворимые витамины. Некоторые из этих соединений могут быть отнесены к группе простых (нейтраль­ных) липидов, другие — сложных.

По другой классификации липиды в зависимости от их отношения к щелочам делят на две большие группы: омыляемые и неомыляемые. К группе омыляемых липидов относятся простые и сложные липиды, которые при взаимодействии со щелочами гидролизуются с образова­нием солей высокомолекулярных кислот, получивших название «мы­ла». К группе неомыляемых липидов относятся соединения, не подвергающиеся щелочному гидролизу (стерины, жирорастворимые витамины, простые эфиры и т. д.).

По своим функциям в живом организме липиды делятся на струк­турные, запасные и защитные.

Структурные липиды — главным образом фосфоли­пиды.

Запасные липиды — в основном жиры.

Защитные липиды растений — воски и их производные, покрывающие поверхность листьев, семян и плодов, животных – жиры.

ЖИРЫ

Химическое название жиров — ацилглицерины. Это сложные эфиры глицерина и высших жирных кислот. «Ацил-» — это означает «остаток жирных кислот».

В зависимости от количества ацильных радикалов жиры разделяются на моно-, ди- и триглицериды. Если в составе молекулы 1 радикал жирных кислот, то жир называется МОНОАЦИЛГЛИЦЕРИНОМ. Если в составе молекулы 2 радикала жирных кислот, то жир называется ДИАЦИЛГЛИЦЕРИНОМ. В организме человека и животных преобладают ТРИАЦИЛГЛИЦЕРИНЫ (содержат три радикала жирных кислот).

Три гидроксила глицерина могут быть этерифицированы либо только одной кислотой, например пальмитиновой или олеиновой, либо двумя или тремя различными кислотами:

Природные жиры содержат главным образом смешанные триглице-риды, включающие остатки различных кислот.

Так как спирт во всех природных жирах один и тот же — глицерин, наблюдаемые между жирами раз­личия обусловлены исключительно составом жирных кислот.

В жирах обнаружено свыше четырехсот карбоновых кислот раз­личного строения. Однако большинство из них присутствует лишь в незначительном количестве.

Кислоты, содержащиеся в природных жирах, являются монокарбоновыми, постро­ены из неразветвленных углеродных цепей, содержащих чет­ное число углеродных атомов. Кислоты, содержащие нечетное число атомов углерода, имеющие разветвленную углеродную цепочку или содержащие циклические фрагменты, присутствуют в незначительных количествах. Исключение составляют изовалериановая кислота и ряд циклических кислот, содержащихся в не­которых весьма редко встречающихся жирах.

Наиболее распространенные в жирах кислоты содержат от 12 до 18 атомов угле­рода, они часто называются жирными кислотами. В состав многих жиров входят в небольшом количестве низкомолекулярные кислоты (С2—С10). Кислоты с числом атомов углерода выше 24 присут­ствуют в восках.

В состав глицеридов наиболее распространенных жиров в значительном количестве входят ненасыщенные кислоты, содержащие 1—3 двойные связи: олеиновая, линолевая и линоленовая. В жирах животных присутствует арахидоновая кислота, содержащая четыре двойные связи, в жирах рыб и морских животных обнаружены кислоты с пятью, шестью и более двойными связями. Большинство ненасыщенных кислот липидов имеет цис-конфигурацию, двойные связи у них изолированы или разделены метиленовой (—СН2—) груп­пой.

Из всех непредельных кислот, содержащихся в природных жирах, наиболее распространена олеиновая кислота. В очень многих жирах олеиновая кислота составляет больше полови­ны от общей массы кислот, и лишь в немногих жирах ее содер­жится меньше 10%. Две другие непредельные кислоты — линолевая и линоленовая — также очень широко распростра­нены, хотя они присутствуют в значительно меньшем количестве, чем олеиновая кислота. В заметных количествах линолевая и линоленовая кислоты содержатся в растительных мас­лах; для животных организмов они являются незаменимыми кислотами.

Из предельных кислот пальмитиновая кислота почти так же широко распространена, как и олеиновая. Она присутству­ет во всех жирах, причем некоторые содержат ее 15—50% от общего содержания кислот. Широко распространены стеари­новая и миристиновая кислоты. Стеариновая кислота содер­жится в большом количестве (25% и более) только в запасных жирах некоторых млекопитающих (например, в овечьем жи­ре) и в жирах некоторых тропических растений, например в масле какао.

Целесообразно разделять кислоты, содержащиеся в жи­рах, на две категории: главные и второстепенные кислоты. Главными кислотами жира считаются кислоты, содержание которых в жире превышает 10%.

Физические свойства жиров

Как правило, жиры не выдерживают перегонки и разлага­ются, даже если их перегоняют при пониженном давлении.

Температура плавления, а соответственно и консистенция жиров зависят от строения кислот, входящих в их состав. Твердые жиры, т. е. жиры, плавящиеся при сравнительно вы­сокой температуре, состоят преимущественно из глицеридов предельных кислот (стеариновая, пальмитиновая), а в маслах, плавящихся при более низкой температуре и представляющих собой густые жидкости, содержатся значительные количества глицеридов непредельных кислот (олеиновая, линолевая, ли-ноленовая).

Так как природные жиры представляют собой сложные смеси смешанных глицеридов, они плавятся не при определен­ной температуре, а в определенном температурном интервале, причем предварительно они размягчаются. Для характеристи­ки жиров применяется, как правило, температура затверде­вания, которая не совпадает с температурой плавления — она несколько ниже. Некоторые природные жиры — твердые ве­щества; другие же — жидкости (масла). Температура затверде­вания изменяется в широких пределах: -27 °С у льняного мас­ла, -18 °С у подсолнечного, 19—24 °С у коровьего и 30—38 °С у говяжьего сала.

Температура затвердевания жира обусловлена характером составляющих его кислот: она тем выше, чем больше содержа­ние предельных кислот.

Жиры растворяются в эфире, полигалогенопроизводных, в сероуглероде, в ароматических углеводородах (бензоле, толу­оле) и в бензине. Твердые жиры трудно растворимы в петролейном эфире; нерастворимы в холодном спирте. Жиры нера­створимы в воде, однако они могут образовывать эмульсии, ко­торые стабилизируются в присутствии таких поверхностно-ак­тивных веществ (эмульгаторов), как белки, мыла и некоторые сульфокислоты, главным образом в слабощелочной среде. При­родной эмульсией жира, стабилизированной белками, являет­ся молоко.

Химические свойства жиров

Жиры вступают во все химические реакции, характерные для сложных эфиров, однако в их химиче­ском поведении имеется ряд особенностей, связанных со строением жирных кислот и глицерина.

Среди химических реакций с участием жиров выделяют несколько типов превращений.

studfiles.net

— функции — Биохимия

Липиды являются третьим классом органических веществ из которых состоит живой организм. Правильный качественный и количественный состав липидов клетки определяет ее возможности, активность и выживаемость. Жирнокислотный состав мембранных фосфолипидов, недостаток или избыток холестерола в мембране неизбежно влияет на деятельность мембранных белков – транспортеров, рецепторов, ионных каналов. Все это влечет за собой изменение работы клеток и, конечно, функций всего органа, как например, при инсулиннезависимом сахарном диабете. Существуют наследственные болезни накопления липидов – липидозы, сопровождающиеся тяжелыми нарушениями в организме.

Необходимость изучения строения, свойств и видов липидов кроется в многообразии из функций. Функции липидов существенно зависят от их вида.

Резервно-энергетическая функция

Триацилглицеролы подкожного жира являются основным энергетическим резервом организма при голодании. В адипоцитах жиры могут составлять 65-85% веса. Для поперечно-полосатой мускулатуры, печени и почек они являются основным источником энергии.

Структурная функция

Мембраны клеток состоят из фосфолипидов, обязательным компонентом являются гликолипиды и холестерол. Основным компонентом сурфактанта легких является фосфатидилхолин.

Т.к. активность мембранных ферментов зависит от состояния и текучести мембран, то жирнокислотный состав и наличие определенных видов фосфолипидов, количество холестерола влияет на активность мембранных липидзависимых ферментов (например, аденилатциклаза, Nа++-АТФаза, цитохромоксидаза).

Сигнальная функция

Гликолипиды выполняют рецепторные функции и задачи взаимодействия с другими клетками. Фосфатидилинозитол непосредственно принимает участие в передаче гормональных сигналов в клетку. Производные жирных кислот – эйкозаноиды – являются «местными или тканевыми гормонами», обеспечивая регуляцию функций клеток.

Защитная функция

Подкожный жир является хорошим термоизолирующим средством, наряду с брыжеечным жиром он обеспечивает механическую защиту внутренних органов.

Фосфолипидный фактор активации тромбоцитов участвует в агрегации тромбоцитов, играет роль как медиатор воспаления и в патогенезе анафилактического шока.

biokhimija.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *