Где у растений накапливается крахмал – Запасное вещество крахмал накапливается у растений в

Включения растительной клетки

Включения представляют собой разнообразные продукты обмена веществ протопласта, различным образом оформленные структуры, не обладающие жизненными свойствами и откладываемые как в самом протопласте (цитоплазме и других органоидах), так и вакуолях и реже в оболочке.

Наибольшее их значение состоит в том, что они представляют собой вещества запаса, т. е. вещества, которые в определенные моменты могут вновь использоваться клеткой (запасной крахмал, белок, масло). В отношении других функций включений пока можно высказать только предположения. Например, некоторые вещества могут возникать как приспособление к каким-либо особым условиям существования, другие образуются как отбросы, конечные продукты обмена веществ (некоторые кристаллы). Включения возникают и в результате старения клеток или вследствие каких- либо патологических явлений. Вообще включения — структуры непостоянные, они могут появляться и исчезать в разные периоды деятельности клетки. Поэтому присутствие их характеризует физиологическое состояние и возраст клетки. По наличию, форме и распределению этих веществ часто отличают одни виды, роды и семейства от других, поэтому распознавание включений, описание их формы имеет большое значение для сравнительной анатомии. Так как включения представляют собой твердые или жидкие вещества, имеющие определенную форму, то их можно различать в световой микроскоп. Из включений наибольшее значение имеют крахмальные зерна, жировые капельки, отложения белковых веществ, органические и неорганические кристаллы.

Крахмальные зерна — наиболее распространенные и важные образования среди включений, в химическом отношении представляющие .собой полимерный углевод. Запасной крахмал растений, встречающийся исключительно в виде крахмальных зерен, — основной тип запасных питательных веществ растений. Кроме того, он является самым важным соединением, используемым в пищу растительноядными животными. Громадное значение имеет крахмал как источник пищи для людей. Пшеничная мука, например, почти на 3/4 состоит из зерен крахмала.

Как уже сообщалось, крахмальные зерна образуются только в пластидах живых клеток. В хлоропласте на свету в результате процесса фотосинтеза откладываются очень мелкие зерна (реже палочки) ассимиляционного (первичного) крахмала. Особенно это характерно для так называемых крахмалистых растений (злаки). Ассимиляционный крахмал — продукт непостоянный и откладывается только при избытке растворимых углеводов в клетке. Ночью, при отсутствии фотосинтеза, он с помощью ферментов гидролизуется до сахара и транспортируется в другие части растений. Процесс гидролиза в хлоропластах обратим и не ведет к их разрушению. Более крупные зерна запасного (вторичного) крахмала откладываются из притекающего сахара в амилопластах, сосредоточенных в частях растений, лишенных света. Запасной крахмал амилопластов сохраняется более продолжительное время, чем ассимиляционный крахмал хлоропластов. При мобилизации запасного крахмала происходит его гидролиз (осахаривание) с помощью ферментов (амилазы и др.). Этот процесс необратим, так как амилопласт, образующий запасной крахмал, при гидролизе разрушается.

Крахмальные зерна имеют свойства кристаллического вещества, в поляризованном свете они дают двойное лучепреломление, в результате которого образуется черный крест с пересечением лучей в центре крахмального зерна. С другой стороны, зерна крахмала обладают и некоторыми свойствами коллоидов, например, всем известно свойство картофельного крахмала набухать в горячей воде, которое используется при изготовлении клейстера.

Образование крахмальных зерен связано с наличием образовательного центра в амилопласте, вокруг которого стромой амилопласта откладывается вещество крахмала. Крахмал отлагается слоями, имеющими различный коэффициент преломления, благодаря чему эти слои могут быть видны под микроскопом.

Крахмальные зёрна

У злаков и бобовых отдельные слои вокруг образовательного центра откладываются равномерно, вследствие чего крахмальные зерна обнаруживают концентрическую слоистость. У других растений, особенно образующих крупные крахмальные зерна (картофель), отдельные слои крахмала откладываются вокруг образовательного центра неравномерно: на одной стороне интенсивнее, на другой слабее, в результате образуются крахмальные зерна с эксцентрической слоистостью. Причем, характер слоистости зависит от вида растения и не определяется положением образовательн

www.activestudy.info

Крахмал растений | Фитоблог

Крахмал растений (Amylum) является запасным полисахаридом растений, накапливающимся в форме зерен и состоящим из амилозы (17-24%) и амилопектина (76-83%). Оба из них являются 1,4-α-глюканами. Амилопектин сосредоточен в наружных слоях крахмальных зерен, а амилоза составляет середину их.

Амилоза – линейный глюкан, где остатки глюкозы соединены 1,4-связями; амилоза легко растворима в воде и дает растворы с невысокой вязкостью.

Амилопектин – разветвленный глюкан, где остатки глюкозы соединены как 1,4-, так и 1,6-связями; он растворим только в горячей воде и дает вязкие растворы (клейстер). Йод окрашивает амилозу в синий цвет, а амилопектин – в фиолетовый.

У каждого растения крахмальные зерна имеют определенную форму и размеры. Например: картофельный крахмал имеет зерна 80-100 мкм, кукурузный – 25-35 мкм, пшеничный – 6-8 мкм, а рисовый – 4-5 мкм.

По физико-химическим свойствам крахмальные зерна не является индивидуальным веществом; кроме углеводов (96%) они содержат еще минеральные вещества (0,7%), жирные кислоты (0,6%). Крахмал нерастворим в холодной воде, спирте, эфире. Он подвержен ферментативному и кислотному гидролизу с образованием декстринов и конечного продукта – глюкозы. При набухании в горячей воде зерна крахмала лопаются и образуют клейстер. Однако у крахмальных зерен гороха, где 60-70% составляет амилоза, этого не происходит и клейстер почти совсем не образуется.

Применение крахмала в медицине. Крахмал используется в медицинской практике в качестве присыпки, компоненов таблеток, мазей, а декстрин – для приготовления эмульсий. Крахмал используется также как обволакивающее средство при воспалительных процессах в желудочно-кишечном тракте. Усиливает секрецию инсулина, снижает содержание холестерина, усиливает синтез рибофлавина кишечными бактериями и обмен желчных кислот, угнетает активность трипсина (за счет комплексообразования с белками).

Гликоген является 1,4 – 1,6-D-глюканом. Это главный запасной продукт животных.

Целлюлоза является 1,4-β-D-глюканом (глюкопирананом). Основное медицинское применение находит в виде ваты, бинтов, ткани. Натриевая соль карбоксиметилцеллюлозы (NaКМЦ) применяется в производстве стабилизатора суспензий и загустителя.

Интересные статьи:

Другие интересные статьи на сайте:

phytoblog.ru

Крахмал в пластидах — Справочник химика 21

    Ядро клетки по своему составу представляет ту же протоплазму, только более уплотненную и с прибавлением небольшого количества фосфорных соединений. Кроме того, клетки содержат в себе некоторые специализированные скопления белка — пластиды, представляющие собой как бы лабораторию органической химии, в которой происходят выработка и преобразование различного рода органических соединений. К пластидам относятся, например, хлорофилловые зерна растений, поглощающих угольную кислоту и обладающих способностью разлагать ее на свету на ее составные элементы, причем кислород возвращается в воздух, а углерод усваивается и отлагается в растениях в виде углеводов крахмала, сахара и пр. Усвоение углерода путем расщепления, углекислого газа происходит по уравнению  
[c.22]

    Основным запасным полисахаридом в растениях является крахмал, образующийся в пластидах (хлоропластах или аминопластах) в виде крахмальных зерен диаметром от 1 до 100 мкм. Биосинтез крахмала проходит в две ступени сначала образуется амилоза, а затем на ее основе осуществляется синтез амилопектина. Крахмал на длительный период накапливается в семенах, где используется при их прорастании. Обычно же он концентрируется в листьях в период активного фотосинтеза, после которого ферментами переводится в удобную для транспортных целей сахарозу. [c.338]

    Листья наземных растений и слоевища водорослей являются неоднородными системами с огромным числом поверхностей раздела между воздушными каналами, стенками клеток, цитоплазмой, вакуолями, пластидами и зернами крахмала прохождение света через растения или органы растений представляет собой очень сложное явление. Этот вопрос неоднократно обсуждался во многих работах [17, 28—36, 40, 41, 44, 48], но это обсуждение не выходило сколько-нибудь существенно за пределы качественного рассмотрения. 

[c.83]

    Необходимо учитывать, что при переходе темнота — свет происходит, как правило, уменьшение объемна хлоропластов (фиг. 29) за счет укорочения их короткой оси (наблюдается уплощение пластид). Однако при достаточно длительном освещении в хлоропластах может образовываться и откладываться крахмал в виде зернышек или палочек, за счет чего длинная ось хлоропластов удлиняется иногда в 2—3 раза, что и приводит к увеличению объема и поверхности хлоропластов. [c.81]

    Крупная содержащая хлорофилл пластида, в которой протекает фотосинтез. Хлоропласт окружен оболочкой из двойной мембраны и заполнен студенистой стромой. В строме находится система мембран, собранных в стопки, или граны. В ней же может отлагаться крахмал. Кроме того строма содержит рибосомы, кольцевую молекулу ДНК и капельки масла 

[c.181]

    Часть образующихся в процессе фотосинтеза сахаров почт немедленно превращается в высокополимерное соединение — крахмал, запасающийся в виде крахмальных зерен в хлоро пластах и лейкопластах одновременно другая часть сахаров выводится из пластид и перемещается в растении в какие-нибудь другие места. Сахар, превращенный в крахмал, тем самым на время изымается из дальнейших метаболических, превращений, однако крахмал может вновь расщепляться да сахара, который легко окисляется и при этом обеспечивает клетку необходимой энергией. Эту главу мы посвятим рассмотрению механизмов, при помощи которых в растении из СОг и НгО синтезируются сахара. [c.105]

    Прорастание пыльцы и рост пыльцевых трубок значительно влияют на обмен веществ пестика повышается интенсивность дыхания, изменяется водный режим, увеличивается содержание аскорбиновой кислоты, крахмала, сахаров, белков, фосфорных соединений и т.д. Установлено также возникновение и распространение биоэлектрического потенциала на пестиках (напрнмер, у кукурузы) при нанесении пыльцы на рыльце (А. И. Духовный). В оплодотворенных женских клетках возрастает количество митохондрий и пластид, которые вносятся в зародышевый мешок пыльцевыми трубками вместе с ядром и питательными веществами, содержащимися в их протопласте. 

[c.486]

    Жиры и липиды (жироподобные вещества), содержащиеся в растениях, выполняют ряд важнейших функций. Различают запасные и цитоплазматические жиры. Из липидов и липопротеидов построены мембранные слои на поверхности клеток и клеточных структур митохондрий, пластид, ядер. Цитоплазматические липиды, таким образом, регулируют проницаемость клеточных мембран для различных веществ. Содержание их в растениях невелико 0,1 — 0,5% от веса сырой растительной ткани. Запасные жиры содержатся в основном в семенах. Известно, что многие виды растений накапливают как основной продукт жизнедеятельности семян жиры, а не углеводы, поскольку при окислении жиров в процессе прорастания семян накапливается в два раза больше энергии, чем при окислении крахмала. Меньше содержится жиров в семенах зерновых культур 2 — 3% у ржи, ячменя, пшеницы, 6% у кукурузы. Масличные культуры содержат значительно больше жиров подсолнечник 30 — 50%, соя 20 — 30%, клещевина 50 — 60%. Растительные жиры — ценный продукт питания человека и животных, значительная часть жиров используется в лакокрасочной промышленности. [c.437]

    Определение крахмала. Качественная реакция на крахмал. Одно из самых распространенных веществ в растительной клетке — крахмал. Это соединение обладает двойным лучепреломлением, что делает его удобным объектом для наблюдения в поляризованном свете. Крахмал встречается в виде зерен, имеющих слоистое строение, величина и форма которых неодинакова у различных растений. В клетке он образуется при участии пластид. Характерная особенность этого углевода — то, что он не растворяется в холодной воде. [c.106]

    При недостатке магния накапливаются моносахариды, тормозится их превращение в полисахариды (в крахмал), слабо функционирует аппарат синтеза белка, рибосомы диссоциируют на субъединицы. Это приводит к увеличению в 1,5 — 4 раза количества свободных аминокислот. При недостатке магния нарушается формирование пластид матрикс хлоропластов просветляется, граны слипаются. Ламеллы стромы разрываются и не образуют единой структуры, вместо них появляется много везикул. При магниевом голодании между зелеными жилками появляются пятна и полосы светло-зеленого, а затем желтого цвета. Края листовых пластинок приобретают желтый, оранжевый, красный или темно-красный цвет, и такая мраморная окраска листьев наряду с хлорозом служит характерным признаком нехватки магния. На более поздних стадиях магниевого голодания светло-желтые и беловатые полоски отмечаются и на молодых листьях, свидетельствуя о разрушении в них хлоропластов, а затем и каротиноидов, причем зоны листа, прилежащие к сосудам, дольше остаются зелеными. Впоследствии развиваются хлороз и некроз, затрагивая в первую очередь верхушки листьев. [c.252]

    Крахмал всегда образуется и запасается в виде крахмальных зерен, находящихся в пластидах — хлоропластах либо амилопластах. Крахмальные зерна — это высокоорганизованные структуры, форма и размер которых очень разнообразны, но часто характерны для данного вида растения. Фор

www.chem21.info

Крахмал синтез у растений — Справочник химика 21

    Внесение калийных удобрений или инфильтрация в листья растений калийных солей значительно ослабляет скорость гидролиза сахарозы и усиливает ее синтез. При недостатке калия усиливается распад сахарозы и накапливается в растениях большое количество моносахаридов. Калийные удобрения усиливают также образование крахмала в растениях и снижают скорость его расщепления. [c.75]
    На молекулярном уровне конверсия В-амилозы в А-амилозу происходит с потерей значительного количества воды, после чего цепи амилозы перемещаются в вакантные участки решетки, освободившиеся от стопок гидратной воды. Полиморфизм крахмала в растениях может быть следствием различий в окружении в процессе его биосинтеза. Синтез и кристаллизация могут происходить следующим образом сначала синтезируются единичные нити амилозы, затем они переплетаются друг с другом, образуя двойные спирали. Далее происходит кристаллизация в полиморфные формы А или В в зависимости от количества воды в окружающей среде. Вероятно, такой механизм подразумевает низкую степень кристалличности конечного материала,, что в общем случае действительно имеет место. [c.265]

    Гербицидные дозы 2,4-Д приводят к торможению фотосинтеза в растениях. Синтез углеводов начинает протекать менее интенсивно. Резервный крахмал в растении гидролизуется с образованием сахаров в большем количестве, чем его может накапливаться, так как одновременно под действием гербицида происходит интенсивное нерегулируемое деление клеток в тканях, приводящее к повышенному расходу энергии, потребность в которой удовлетворяется путем окисления сахаров, образующихся из крахмала. Запас углеводов в растении, обработанном [c.89]

    Мы ничего не знаем также о процессе превращения сахара в крахмал, который является главным углеводным резервом растений. Но обратный процесс — превращение крахмала в сахар — был предметом бесчисленных исследований, так как он лежит в основе двух крупных отраслей промышленности — пивоварения и виноделия. Известно, что под действием растворимого фермента амилазы крахмал гидратируется, образуя ряд продуктов гидратации, доходящих до мальтозы и даже до глюкозы. Превращение глюкозы в крахмал может, следовательно, происходить только путем ряда дегидратаций. Действительно, при действии концентрированной соляной кислоты на глюкозу Эмиль Фишер получил сахар с 12 атомами углерода — изомальтозу это единственный бесспорный синтез, который был до настоящего времени осуществлен в этом направлении. Вполне очевидно, однако, что методы дегидратации, которые мы применяем в лаборатории, не могут дать никакого представления о механизме превращения глюкозы в крахмал в растениях. [c.9]

    Биосинтез полисахаридов растений. Избыток моносахаридов, образующихся в процессе фотосинтеза, используется растениями для синтеза крахмала и целлюлозы — главных растительных полисахаридов. Синтез крахмала в растениях катализируется несколькими ферментами крахмал-синтетазами) и протекает с участием затравки декстрина, содержащего четыре и более остатков глюкозы. Источником глюкозы является АДФ-глюкоза (реже — УДФ-глюкоза)  [c.423]

    Контактные превращения окиси углерода, при гидрировании ее в присутствии катализаторов, ведут к синтезу горючего масла (Ф. Фишер и сотрудники), состоящего из целой серии алифатических углеводородов. Можно думать, как мне (Н. Д. Зелинский) кажется, что первоисточником для синтеза растением изопрена является также окись углерода и что изопрен такой же продукт ассимиляции угольной кислоты иод влиянием света и хлорофилла, как крахмал и углеводы вообще. [c.278]

    Синтез крахмала в растениях происходит также в результате синтезирующего действия фермента фосфорилазы. Исходным веществом для синтеза крахмала данным путем служит глю-козо-1-фосфат. При этом также необходима затравка . Синтезируется полисахарид типа амилозы. В синтезе амилопектина участвует С-фермент. [c.357]

    Микроэлементами называются М , Ре, В, Мо, Мп, Си, Ъп, Со в связи с тем, что малые количества их необходимы для нормальной жизнедеятельности растений. Микроэлементы повышают активность ферментов, способствуют синтезу сахара, крахмала, белков, нуклеиновых кислот, витаминов и ферментов. Микроэлементы вносят в почву с микроудобрениями. [c.697]

    Микроэлементы повышают активность ферментов, катализирующих биохимические процессы в организмах растений, способствуют синтезу белков и нуклеиновых кислот, витаминов, сахаров и крахмала. Некоторые микроэлементы оказывают положительное действие на фотосинтез, ускоряют рост и развитие растений, созревание семян. [c.311]

    Углеводы (сахара и крахмал) —важные пищевые продукты, за счет которых организм человека получает большую часть необходимой ему энергии (разд. 14.8). Энергию для синтеза сахаров, крахмала и целлюлозы растения получают в виде солнечного света. Этот процесс, называемый фотосинтезом, осуществляется при участии зеленого вещества— хлорофилла, содержащего атом магния. Формула хлорофилла имеет следующий вид  [c.401]

    Основным запасным полисахаридом в растениях является крахмал, образующийся в пластидах (хлоропластах или аминопластах) в виде крахмальных зерен диаметром от 1 до 100 мкм. Биосинтез крахмала проходит в две ступени сначала образуется амилоза, а затем на ее основе осуществляется синтез амилопектина. Крахмал на длительный период накапливается в семенах, где используется при их прорастании. Обычно же он концентрируется в листьях в период активного фотосинтеза, после которого ферментами переводится в удобную для транспортных целей сахарозу. [c.338]

    Углеводы являются чрезвычайно важным классом природных соединений. Исследование их химических свойств может дать ценную информацию о механизмах реакций и стереохимии. Значительным достижением в настоящее время является применение углеводов в качестве хиральных синтонов и заготовок для стерео-специфического синтеза таких соединений, как простагландины, аминокислоты, гетероциклические производные, липиды и т. д. Для биолога значение углеводов заключается в доминирующей роли, которая отводится им в живых организмах, и в сложности их функций. Углеводы участвуют в большинстве биохимических процессов в виде макромолекулярных частиц, хотя во многих биологических жидкостях содержатся моно- и диса

www.chem21.info

Крахмал

        основной резервный углевод (См. Углеводы) растений; образуется в клеточных органеллах (хлоропластах (См. Хлоропласты) и амилопластах (См. Амилопласты)) и накапливается главным образом в семенах, луковицах и клубнях, а также в листьях и стеблях. К. откладывается в клетках в виде зёрен, в состав которых входит небольшое количество белков и липидов. Зёрна К. у разных видов растений различаются по размерам (наиболее крупные — у картофеля, их средний диаметр около 33 мкм. наиболее мелкие у риса — около 15 мкм) и форме и имеют слоистую структуру (рис. 1 и 2). При микроскопическом исследовании по виду зёрен К. можно определить их происхождение. К. представляет собой смесь двух полисахаридов: линейного — амилозы (См. Амилоза) и разветвленного — амило-пектина (См. Амилопектин), общая формула которых: (C6H10O5)n,. Как правило, содержание амилозы в К. составляет 10—30%, а амилопектина 70—90% . Полисахариды К. построены из остатков глюкозы (См. Глюкоза), соединённых в амилозе и в линейных цепях амилопектина α-1,4-глюкозидными связями, а в точках ветвления — межцепочечными α-1,6-глюкозидными связями (см. формулы).

        

        (В амилозе связано в среднем около 1000 остатков глюкозы; отдельные линейные участки молекулы амилопектина состоят из 20—30 таких единиц.) Характерное синее окрашивание К. раствором иода (йодная реакция) используется для его обнаружения. При частичном кислотном гидролизе К. образуются полисахариды меньшей степени полимеризации — Декстрины, при полном гидролизе — глюкоза. Ферментативный распад К. может осуществляться различными путями. В присутствии неорганического фосфата растительная фосфорилаза расщепляет α-1,4-связи с образованием глюкозо-1-фосфата, тем самым переводя К. из запасной формы в метаболически активную. Широко распространённые в природе ферменты α- и β-амилазы также расщепляют только α-1,4-связи: β-амилаза — до мальтозы (См. Мальтоза) и декстринов, α-амилаза способна «обходить» точки ветвления и полностью расщеплять К. до низкомолекулярных продуктов (мальтоза, глюкоза). Распад α-1,6-связей с образованием свободной глюкозы катализирует амило-1,6-глюкозидаза. У плесневых грибов существует фермент, расщепляющий К. до глюкозы — глюкоамилаза. Конечные продукты ферментативного расщепления К. — глюкоза и глюкозо-1-фосфат — важнейшие субстраты как энергетического обмена, так и процессов биосинтеза. Биосинтез неразветвлённых цепей К. осуществляется с помощью глюкозилтрансфераз, катализирующих перенос остатка глюкозы от нуклеозиддифосфатглюкозы к растущей углеводной цепи. «Ветвящий» Q-фсрмент переносит концевой глюкозный остаток из основной цепи в боковую с образованием α-1,6-связи в амилопектине. Исходным субстратом при биосинтезе К. у растений может быть Сахароза. К. составляет основную часть важнейших продуктов питания (в муке 75— 80%, в картофеле 25%), легко переваривается в желудочно-кишечном тракте и обладает высокой калорийностью — 16,75 кдж/г (ок. 4 ккал/г). К. и его производные применяются при производстве бумаги, текстильных изделий, клеев, в литейном производстве и др. отраслях промышленности.

         Как лекарственное средство К. входит в состав присыпок, мазей и паст. В качестве индикатора на иод используют 1%-ный раствор К. Применяют также как обволакивающее средство (См. Обволакивающие средства) (клейстер, крахмальный отвар). Из смеси К. (или пшеничной муки) и крахмального клейстера изготовляют облатки.

         Лит.: Химия и технология крахмала, пер. с англ., 2 изд., М., 1956; Химия углеводов, М., 1967; Степаненко Б.Н., Углеводы. Успехи в изучении строения и метаболизма, М., 1968.

         Д. М. Беленький.

        

        К ст. Крахмал.

        

        Рис. 1. Микрофотография зерна крахмала из клубня картофеля; видна слоистая структура.

        

        Рис. 2. Зёрна крахмала в развивающейся клетке эндосперма риса.

slovar.wikireading.ru

Почему растения вырабатывают крахмал? — Детская энциклопедия Потому.ру

В вашей семье кто-нибудь придерживается диеты? Тогда вы, наверное, слышали, как человек говорит, отказываясь от какого-то блюда: «Это не для меня! Слишком много крахмала!» Конечно, если в доме есть растущие дети, то они обычно едят много крахмала, чтобы «лучше расти».

Крахмал, как бы ни относились к нему разные люди, — одно из самых важных веществ в мире. Человечество получает из крахмала больше пищи, чем из любого другого вещества!

Мы получаем наш крахмал из растений, где он находится в виде крошечных крупинок. Как растения вырабатывают крахмал? С помощью солнечного света и хлорофилла растения соединяют воду, впитываемую ими из почвы, с двуокисью углерода, которую они получают из воздуха, в сахар. Сахар растения преобразуют в крахмал.

Растения накапливают крахмал маленькими крупинками в стволах и стеблях, корнях, листьях, плодах и семенах. Картофель, маис, рис и пшеница содержат большие количества крахмала.

Растения вырабатывают крахмал для того, чтобы он служил пищей для молодых побегов и отростков, пока они не в состоянии самостоятельно вырабатывать себе питание. Поэтому, когда вы видите растение, которое начинает разрастаться, знайте, что питание для этого роста обеспечивается за счет накопленных запасов крахмала.

Для людей и животных крахмал представляет энергоемкое питание. Как и сахар, он состоит из углерода, водорода и кислорода. Крахмал несладкий: обычно он безвкусен. Определенные химические вещества во рту, желудке и кишечнике преобразуют крахмалистую пищу в виноградный сахар, который легко усваивается.

Человек получает крахмал из растений, измельчая те их части, где он накапливается. Затем крахмал вымывается водой и оседает на дно больших емкостей, после чего вода выжимается из сырого крахмала, масса высушивается и перетирается в порошок, в виде которого обычно и изготавливается крахмал.

Крахмал применяется в самых неожиданных местах. Он используется при стирке, в качестве клея, при производстве тканей и в качестве основы для многих туалетных препаратов.

potomy.ru

Образование крахмала — Справочник химика 21

    Крахмал. Крахмал накапливается в клубнях, плодах, семенах некоторыми растениями в качестве резервного материала (энергии) (злаки, картофель, рис, кукуруза, пшеница). Крахмал — белый порошок. Зерна крахмала состоят из двух продуктов более растворимого — амилозы (20%) и менее растворимого — амило-пектина, которые отличаются по молекулярной массе и строе 1ию. Вследствие присутствия амилозы крахмал окрашивается иодом в синий цвет. Молекула амилозы имеет линейное строение, амилопектина — разветвленное. Амилоза и амилопектин — полимеры, мономером которых является а-глюкоза. Процесс образования крахмала можно представить так  [c.248]
    Крахмал не дает реакции серебряного зеркала , однако ее дают продукты его гидролиза. Макромолекулы крахмала состоят из многих молекул циклической а-глюкозы. Отсюда процесс образования крахмала можно представить так  [c.336]

    Конденсация моносахаридов не ограничивается образованием дисахаридов. В живых организмах молекулы глюкозы могут конденсироваться тысячами, образуя гигантские молекулы. Входящие в их состав остатки глюкозы могут быть вытянуты в одну линию или же образовывать разветвленные цепи разной длины. Глюкоза входит в состав таких молекул, но только не в виде полных молекул, а в виде остатков, при соединении от каждых двух молекул глюкозы отщепляется по молекуле воды. Термин остаток применяют и к другим молекулам, соединяющимся путем конденсации в гигантские молекулы (их иногда называют макромолекулами). Такие гигантские молекулы имеет, например, крахмал. Он относится к полисахаридам ( много сахаров ). Конденсируясь с образованием крахмала, молекулы глюкозы теряют прежние свойства крахмал не растворяется в воде и несладок, он совершенно безвкусен. [c.145]

    Растения извлекают из почвы калии, который скапливается преимущественно в молодых побегах. Ионы калия принимают участие в процессе ассимиляции. При его недостатке снижается интенсивность фотосинтеза. Наряду с кальцием и магнием калий регулирует состояние коллоидов протоплазмы. При увеличении содержания калия повышается образование крахмала, сахаров, жиров. Много калия потребляют картофель, свекла, подсолнечник, клевер, лен, табак меньше — рожь, пшеница, овес. Калийные удобрения значительно повышают урожайность. Калий в почве находится в основном в недоступных для растений формах. Несмотря на то что много калия возвращается в почву с навозом, потребность сельского хозяйства в калийных удобрениях очень велика. Почти все калийные удобрения содержат ионы хлора, натрия, магния, которые влияют на рост растений. [c.163]

    ЧТО пентозы являются промежуточными продуктами при синтезе гексоз. Образование крахмала за счет доставляемых извне пентоз (см. главу X) указывает, что растения содержат энзимы, способные вызывать переход пентоз в гексозы. С другой стороны, известно, что пентозы могут образовываться при разложении гексоз (через гексуроновые кислоты). [c.43]

    Содержание крахмала в клубнях изменяется в широких пределах— от 12 до 30%. В юго-западных районах оно более высокое, чем в северо-восточных. В сухое теплое лето крахмала накапливается больше, чем в дождливое и холодное. Дожди необходимы в середине роста растения, избыток их нежелателен в период интенсивного образования крахмала. На крахмалистости отрицательно сказываются избыток азотных удобрений и присутствие хлорида натрия. Клубни средней массы (50—100 г) богаче крахмалом, чем крупные и мелкие. В недозрелых клубнях меньше крахмала. [c.13]

    Нахождение Крахмала в природе и его образование. Крахмал —одно из самых распространенных веществ в растительном мире. Он содержится в семенах, зернах, тканях и корнях различных растений. Особенно много его в клубнях картофеля (около 20%) и в зернах злаков (до 70—80%). Это— запасное питательное вещество растений. Крахмал — продукт усвоения двуокиси углерода и воды Превращение СОз и НаО в сложные органические вещества — эндотермический процесс, сопровождающийся поглощением солнечной энергии. Так как он протекает под действием света, то получил название фотосинтеза. Весь процесс фотосинтеза тесно связан с зеленым веществом растений — хлорофиллом. Солнечная энергия превращается при этом в химическую энергию органических веществ. За последние годы выяснено, что до 25% поглощаемой растениями двуокиси углерода осуществляется не из воздуха, а корневой системой растений (при поглощении карбонатов из почвы). При этом процесс образования органических веществ начинается не в листьях, а в зеленых образованиях, находящихся внутри растения. Выяснить это удалось методом радиоактивных изотопов. [c.246]

    Такой же механизм лежит в основе других синтетических процессов — образования крахмала из глюкозы, белков из аминокислот, жиров и т. д. Передача энергии и перенос фосфатных групп в этих процессах обеспечивается участием в реакциях АТФ. [c.24]

    Внесение калийных удобрений или инфильтрация в листья растений калийных солей значительно ослабляет скорость гидролиза сахарозы и усиливает ее синтез. При недостатке калия усиливается распад сахарозы и накапливается в растениях большое количество моносахаридов. Калийные удобрения усиливают также образование крахмала в растениях и снижают скорость его расщепления. [c.75]

    Типичным признаком токсического действия симазина является хлороз затем происходит усыхание верхушек и краев листьев, и сорняк постепенно отмирает. Под действием симазина у чувствительных растений подавляется фотосинтез, вследствие чего тормозится образование крахмала. [c.12]

    Итоговое уравнение реакции образования крахмала в растениях можно выразить уравнением  [c.155]

    Для усиления образования крахмала в растениях необходимо вносить калийные удобрения, но следует избегать внесения хлористых солей. Важное значение для повышения качества клубней имеет применение под картофель бесхлорных форм калийных удобрений. [c.425]

    Фосфорнокислые эфиры глюкозы и фруктозы были выделены как из животных, так и из растительных организмов. Оказалось, что эти эфиры играют исключительно важную роль в жизнедеятельности организмов, являясь промежуточными продуктами расщепления углеводов при брожении и гликолизе (расщеплении полисахарида гликогена до молочной кислоты, происходящем во всех клетках животных организмов), а также при синтетических процессах (например, при образовании крахмала). [c.570]

    Позднее Зейбольд [74] высказал мнение, что наиболее важным результатом, определяемым отношением [а] [Ь], является скорее интенсивность первичного синтеза крахмала, чем приспособление к свету. Эта новая гипотеза опирается на менее обширный экспериментальный материал, чем прежняя теория адаптации. Мнение Зейбольда, что хлорофилл Ь является специфическим сенсибилизатором полимеризации сахаров до крахмала, а не собственно фотосинтеза, кажется в высшей степени неправдоподобным. Остается невыясненным вопрос о том, является ли правильной корреляция содержания хлорофилла Ъ и образования крахмала, и есл

www.chem21.info

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *